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1 Introduction

Photorefractive crystals are electro-optic dielectrics that host a small amount
of photosensitive impurities. Light propagation leads to the generation of out-
of-equilibrium mobile charge, that, in order to reach a stable electro-static
configuration, redistributes throughout the crystal. The ensuing space-charge
field, modifying electro-optically the crystal index of refraction, changes the
trajectory of the ionizing light distribution, altering, in turn, the original
charge-equilibrium conditions [1]. This feedback mechanism gives rise to a
variety of nonlinear effects that go under the generic term of photorefractive
nonlinear optics [2] [3] [4] [5]. For confined optical beams, nonlinear beam
dynamics leads to two basic qualitatively different phenomena: beam fan-
ning and self-lensing, connected, respectively, to the two basic charge trans-
port mechanisms, diffusion and drift. Photorefractive spatial solitons emerge
when beam self-focusing exactly balances diffraction, and are thus gener-
ally connected to regimes in which charge drift plays a fundamental role [6]
[7] [8][9]. In a nonlinear beam perspective, spatial beams self-trap when the
light-space-charge feedback mechanism finds its dynamic equilibrium point
in a nondiffracting slab or needle of light, corresponding to an appropriate
waveguide-like refractive index distribution. In what follows, we discuss such
nonlinear phenomena, concentrating in particular on the basic theory and
phenomenology.

2 Photorefractive Beam Nonlinearity

Photorefractive beam dynamics are fruit of the combined effect of optical
wave-propagation and electro-optic response to the electric field generated
by dislocation of photo-excited charge. A description starts from two ba-
sic issues: 1) Given an optical distribution, what is the induced equilibrium
charge dislocation and hence the photoinduced electric field? 2) How does this
electric field modify, through the electro-optic response, optical propagation?
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Space-charge Field

The basic model that describes charge separation in a photorefractive was
formulated by Kukhtarev and Odoulov [10]. Although it makes use of a num-
ber of approximations, it incorporates all the basic ingredients that allow
for the prediction and description of photorefractive self-trapping, at least
in the case of one-dimensional beams, that is, beams that are confined in
only one transverse dimension. Light-matter interaction reflects the typical
band-structure of a lightly doped dielectric. In particular, the structure can
normally be approximated by considering two intraband levels: one donor
and one acceptor. For n-type photorefractives, donor sites can be optically
ionized by light of an appropriate wavelength, generally visible, depending on
the given impurity. Furthermore, the concentration of donor sites Nd (Nd ≈
1018-1019cm−3) is much greater than that of acceptor impurities Na (i.e.
α ≡ Nd/Na � 1). In absence of ionizing illumination and thermal excitation,
equilibrium is reached when all the acceptor sites are ionized by donors, that
is, the concentration of ionized donors N+

d =Na. For a given optical intensity
distribution I(x, y, z), charge equilibrium is reached when mobile charge gen-
eration and recombination exactly balance, that is (β+sI)(Nd-N+

d )=γNN+
d ,

where β is the thermal excitation rate, s is the photoexcitation cross-section,
γ is electron recombination rate, and N is the local concentration of conduc-
tion electrons. In general, the non-equilibrium condition is described by the
rate equation

∂

∂t
N+

d = (β + sI)(Nd −N+
d )− γNN+

d . (1)

Electrons move in the crystal under the influence of drift, diffusion and, in
some noncentrosymmetric samples, the photovoltaic effect [11], giving rise to
a current density J described by

J = qµNE + kbTµ∇N + βph(Nd −N+
d )Ic (2)

where -q is the electron charge, µ is the charge mobility, kb is the Boltzmann
constant, T is the crystal temperature, and βph is the component of the pho-
tovoltaic tensor along the optical axis c. The model is completed by imposing
charge continuity and the Poisson equation, along with appropriate boundary
conditions,

∂

∂t
ρ +∇ · J = 0 (3)

∇ ·E =
ρ

ε
(4)

where ρ=q(N+
d -Na-N), and ε is the crystal dielectric constant. For conditions

in which the electro-optic sample is biased by a constant applied voltage V ,
the condition

V = −
∫ b

a

E · d` (5)
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holds, where the line integral goes from one electrode (a) to the other (b).
Finally,

∇×E = 0. (6)

This system of equations can be cast into a single nonlinear differential equa-
tion relating E to I [12].

Two fundamental photorefractive time scales emerge: the charge recom-
bination time (or charge lifetime) τr=1/(Nγ) (see eq.(1)), and the dielectric
relaxation time τd=ε/(µNq) (see eq.(3)). For most configurations of interest,
τr � τd, and the study of space-charge evolution starts by considering adi-
abatically ∂N+

d /∂t=0 in eq.(1), along with the generally valid assumptions
that N � Na, and the mentioned α � 1. The resulting nonlinear equation
relating E=E(I) is

∇ · [ γε

qµsα

∂E

∂t
+ E(β/s+ I )

1− ε∇·E
αNaq

1 + ε∇·E
Naq

+

+
kbT

q
∇ ·

(
(β/s + I)

1− ε∇·E
αNaq

1 + ε∇·E
Naq

)
] = 0.

Under appropriate approximations, this equation allows one to calculate
E=E(I).

Beam Propagation

The space-charge field E influences beam propagation through the electro-
optic modulation of the index of refraction. As in standard electro-optic sam-
ples, the index modulation can be phenomenologically described by the rela-
tion

∆nij = −1
2
n3rijkEk −

1
2
n3ε2gijklEkEl (7)

where n is the unperturbed crystal index of refraction, rijk and gijkl are re-
spectively, the linear and quadratic electro-optic tensors, and E=(Ex, Ey,
Ez). For a noncentrosymmetric sample, the quadratic term is generally irrel-
evant,whereas for centrosymmetric ones, the linear response is absent.

For a monochromatic paraxial beam, propagation is described by the
parabolic equation[

∂

∂z
− i

2k
∇2
⊥

]
Ai(x, y, z) = − ik

n
∆nijAj(x, y, z) (8)

where k=2πn/λ is the wave-vector, Ax and Ay are the transverse com-
ponents of the slowly varying optical field, i.e. Eop(r,t)=A(r)exp(ikz-iωt)
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ω = 2πc/nλ, and I=|A(r)|2. Through Eq.(7), and the relationship E=E(I),
Eq.(8) becomes the general nonlinear equation that describes almost all pho-
torefractive nonlinear beam dynamics, and, in particular, solitons.

Photorefraction is thus a consequence of interplay bewteen the small
absorbed (i.e. non-propagating) part of an optical beam and the remnant
propagating light, that, in fact, propagates linearly in the medium (like in
thermo-optic effects). This fact, that distinguishes it from the fundamental
nonlinear optical phenomena connected to direct optical self-action, is useful
in understanding both the strengths and the limits of photorefraction. The
strengths lie in the fact that the response is due to a temporally extended
buildup process, allowing for the observation of intense beam self-action even
with low optical intensities. This temporally ”nonlocal” response, however,
limits attainable dynamics. Thus, photorefractive phenomena are sometimes
referred to as beam nonlinearities instead of optical nonlinearities, this char-
acteristic being also at the basis of phenomena connected to self-trapping of
time-varying light beams.

3 Self-trapping Mechanisms

The highly nonlinear system described above gives rise to a host of different
phenomena associated with beam self-trapping, which have been the object
of intense investigation during the past decade. The starting point of the
associated scientific effort is the idea, formulated in 1992 [6] [13] and later
confirmed in pioneering experiments [14], that, in biased drift-dominated pho-
torefractives, self-lensing could lead to trapping of confined optical beams.
In what follows we shall describe the various different types of photorefrac-
tive self-trapping mechanisms, i.e. quasi-steady-state solitons, steady-state
screening solitons, photovoltaic solitons, semiconductor screening solitons,
and centrosymmetric self-trapping. Attention is concentrated on scalar con-
figurations, although effects connected to the tensorial nature of eq.(7) have
been investigated [15] [16].

3.1 Quasi-Steady-State Solitons

Quasi-steady-state solitons are beams that self-trap in a biased photorefrac-
tive crystal during a finite time window, and subsequently undergo beam
diffraction, break-up and fanning [14]. They contain, in an embryonic form,
most of the ingredients that lead to the formation of stable self-trapping.
They were the first type of photorefractive spatial soliton to be predicted
[6] [13] and observed, both as bright and dark self-trapped beams in one
and two-transverse dimensions [14] [17] [18], and are still today subject of
investigation [19] [20] . Given their transient nature, they have been mostly
associated to studies on the time evolution of photorefractive beam dynamics
[19][21][22] [23], taking into account the full time-dependent model of Eqs.(1-
6). Their potential for passive optical guiding in bulk media was recognized
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early on [24], in an experiment that represents the first reported application
of photorefractive solitons, in which a dark photorefractive quasi-steady-state
soliton was made to guide a non-photoactive read beam, as shown in Fig.(1).

Fig. 1. Top view photographs of (a) a dark 1+1D quasi-steady-state 12µm soli-
ton at λ=457nm (b) a linearly diffracting dark notch with drift nonlinearity
disactivated (c) a guided λ=632nm He-Ne beam and (d) the same undergoing
diffraction when no soliton is present (from ref.([24]))

Although the theoretical description of these self-trapped beams is rather
intricate, the physical mechanism in the slab soliton case is intuitive. As
schematically illustrated in Fig.(2), bright slab-quasi-steady-state solitons are
generated when a continuos-wave visible photoactive laser beam (i.e., capable
of ionizing photorefractive impurities) is focused onto the input facet of a
zero-cut photorefractive sample (for example, a doped SBN crystal).

Fig. 2. Schematic set-up allowing the generation and observation of quasi-steady-
state photorefractive bright slab solitons. Dark solitons are generated with an appro-
priate phase mask at the input, and 2+1D needle solitons are generated substituting
the cylindrical lens with a spherical one.

The beam is made to propagate along an ordinary principal axis (i.e., the z
axis), being itself extraordinarily polarized (i.e., along the x axis). Electrodes
on the crystal x facets allow the application of the external bias field. The
beam is confined in the x dimension, whereas it is extended (nondiffracting) in
the second transverse direction y. During the initial stages of beam evolution,
for times shorter than τd , mobile charges are photoexcited and drift in the
external field. For n-type samples, such as SBN, mobile electrons statistically
drift towards the positive electrode and the ensuing charge separation with
the locked ionized impurities gives rise to a double layer that screens the
external field. The electro-optic response of Eq.(7) is reduced to the scalar
equivalent

∆n = −1
2
n3r33E (9)

where i = j = k =3 (x axis) and r33 is the contracted form of r333. For an
appropriate arrangement, r33E >0, and the unscreened region of the crystal
suffers a global decrease of index of refraction. In the screened region, this
effect is weaker, and the net result is a higher index of refraction in the il-
luminated region, giving rise to self-lensing. During the screening stages, if
the applied field is sufficiently high, the charge pattern passes through a self-
lensing regime such as to trap the diffracting beam into a slab-soliton. How-
ever, the presence of propagating light continues generating mobile charges,
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and these keep drifting towards the positive pole until the actual charge sep-
aration reaches saturation when screening is total. This leads to a highly
insensitive saturated response in all illuminated regions, giving rise to a gen-
erally widened index modulation (a wide step-index ”waveguide”) that does
not correspond to a self-trapping index structure. This simple picture holds
for beam intensities much higher than typical dark equivalent illuminations,
i.e., I � Id ≡ β/s (of the order of 10−3-10−6W/cm2), and for applied exter-
nal fields much higher than typical diffusion fields (∼102 V/cm for a 10 µm
beam). The quasi-steady-state self-trapping regime has been analytically de-
scribed in refs.( [6] [13] [25]) by means of a phenomenological model, whereas
numerical investigation of the entire transient regime in both 1+1D and 2+1D
can be found in refs.([19][21] [22] [23]). An analytical expression of the time
dependent space-charge field can furthermore be found in refs.([12] [26]).
Both theory and experiment agree on two main features: (1) quasi-steady-
state soliton formation is not dependent on the intensity of the propagating
beam (as long as I � Id) and (2) quasi-steady-state solitons are character-
ized by a whole region of existence, forming, for a given input beam size, in
a range of external bias fields (always being V/L � Ed)[27][28].

Fig. 3. Numerical simulation results for the normalized space-charge field E evolu-
tion for t/Te=0, 0.1, 0.2, 0.5, 1, 2, 5, 10, ∞, with Te=γε/qµsα (left) and a typical
half-width-half-maximum (HWHM in normalized units) evolution for a 1+1D soli-
ton configuration (from ref.([21]))

As can be seen in Fig.(3) (on the right), the quasi-steady-state regime occurs
for a relatively extended plateau (note the logarithmic time scale in Fig.(3)).
The plateau arises when the intermediate light trapping space-charge field
E forms, in a process that can be qualitatively explained as follows: Given
that time-dynamics are locally proportional to light intensity, once trapping
occurs, space-charge broadening is temporarily slowed down by the absence
of light in the immediate vicinity of the screening region. As trapping is
weakened, time dynamics speed up and reach a time-behaviour similar to the
build-up process.

3.2 Screening Solitons

The most widely studied self-trapping mechanism in photorefractives is with-
out doubt the so-called screening nonlinearity. The reason for this lies in the
fact that the resulting self-trapped beams are steady-state, that is, they do
not form and break-up in a transient, but rather persist in time as long as
the laboratory parameters maintain their values. Furthermore, in their one-
dimensional manifestation as 1+1D slab solitons, the model described leads,
under appropriate approximations, to an explicit saturable Kerr-like nonlin-
ear equation (in a merely formal analogy), that allows direct qualitative and
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quantitative prediction and interpretation, as opposed to either merely phe-
nomenological models or purely numerical strategies. Screening solitons are
supported by a slightly modified quasi-steady-state soliton-supporting con-
figuration, and, like these, exist also in the higher dimensional needle case.
The higher dimensionality, of central import for beam steering applications,
fundamentally complicates the theoretical description, and raises issues con-
nected to the anisotropy of the underlying physical mechanism.

The discovery of steady-state photorefractive screening solitons began
with the preliminary observation that response saturation bringing to soli-
ton annihilation in quasi-steady-state configurations can be inhibited making
use of an artificial background illumination [29]. It was soon shown that this
could indeed lead to stable self-trapped photorefractive beams [30] [31] [32].
The basic idea is the following: Since the runaway charge separation leading
to quasi-steady-state soliton decay is due to the inevitable charge accumu-
lation at the edge of the propagating beam, this being a direct consequence
of charge recombination and low dark conductivity, by artificially increas-
ing the global crystal conductivity with a constant optical illumination of
the whole sample, charge can move through the equivalent circuit formed by
the crystal and the voltage supply, thereby avoiding unrestrained buildup.
Final charge separation depends on the ratio of the intensity of the propa-
gating beam to the background illumination, and the resulting electric field
in the crystal follows qualitatively that of a series of resistors to which a con-
stant voltage V is applied, resulting lower in the beam region, and thus, like
in the previous quasi-steady-state case, giving rise to self-lensing [33]. Since
the mechanism is based on a dynamic equilibrium, stable steady-state spatial
self-trapping occurs when this mechanism generates the self-consistent charge
separation that exactly balances optical diffraction. This occurs for a precise
set of physical parameters, and gives rise to what is generally referred to as
the ”soliton” existence curve [34], making screening steady-state solitons very
different from their transient counterparts.

Screening solitons have been observed in a number of different configura-
tions, attesting to their relatively general nature. They have been observed
as bright 1+1D slab solitons [29], dark 1+1D slabs [30] [35], as bright 2+1D
needle solitons [36] [37], and even as dark needles [39]. They have been de-
tected in different crystals, such as SBN [33] [36] [37] , in BSO and BGO [29]
[38], in semiconductor InP [40] [41], in BaTiO3 [42], and have been predicted
and observed in ferroelectrics in the high symmetry paraelectric phase [43]
[44] [45] .

The experimental apparatus that allows screening soliton formation is in
all similar to that needed to observe quasi-steady-state solitons illustrated
in Fig.(2), with the addition of a background illumination, as indicated in
Fig.(4). In the most appropriate configuration, the background illumination
is obtained by illuminating the entire crystal with a plane wave of the same
wavelength λ as that of the soliton beam, polarized orthogonal to the soliton
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beam polarization, i.e., orthogonal to the crystal c axis (ordinary beam), and
made to copropagate along the z axis, with the soliton beam itself. Use of the
same wavelength allows the implementation of a single CW laser for the entire
setup, and makes the theoretical interpretation independent of the sample
specific optical photorefractive cross-section s=s(λ). Ordinary polarization
avoids the possible coupling of background light into the soliton support-
ing index pattern, given that the off-axis tensorial terms of the electro-optic
response described in Eq.(7) are generally weaker than diagonal ones (i.e.
r13 < r33). Finally, copropagation makes the ratio of the peak soliton beam
intensity I0 to the background illumination Ib constant for each value of z
along the propagation direction, given that the absorption is the same for
the two beams. This last condition is particularly important because soliton
formation strongly depends on the value of this ratio u2

0= I0/Ib, known as
the intensity ratio, that must be independent of z.

Fig. 4. Schematic set-up allowing the generation and observation of steady-state
photorefractive bright screening needle solitons. Note the introduction of a back-
ground illumination and a selector before the z-axis CCD camera.

Fig. 5. Dark slab screening solitons. Beam profiles and photographs of the input,
normally diffracting output, and soliton output beams after propagation in a 5-mm
SBN crystal. Taken from [35]

Fig. 6. Needle Soliton: Photographs and beam profiles (cross sections) of (a) a
c-polarized 488-nm needle soliton beam and a (b) c-polarized 632.8-nm 2D non-
photoactive probe beam. Top photographs and sections show input beams, the
middle show the diffracted beams at zero voltage, and the bottom show the slightly
distorted needle soliton output and the corresponding passively guided probe beam.
Taken from [51]

Screening solitons have been used to observe a number of startling nonlin-
ear effects, such as soliton spiralling [46], fusion [47], and soliton annihiltaion
[48], to realize new optical devices, such a reconfigurable direction coupler
[49] and an enhanced second-harmonic generation [50] [51], and to investi-
gate hereto unexplored phenomena, such as self-trapping of incoherent light
beams, discussed in Chapter... .
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The theoretical description of slab screening solitons [30] shown in Fig.(5)
is to be considered one of the most important successes of the Kukhtarev
model described above, whereas the description of needle solitons shown in
Fig.(6) is still subject of investigation, and the strikingly symmetric self-
trapping that emerges from a highly asymmetric physical process baffles more
than a researcher [52] [53] [54] [55].

Screening Slab-Solitons Screening slab-soliton description was formulated
on the basis of an approximate reduction of the full Kukhtarev model [30]
[31] [32] [33] [34]. Consider the reduced 1+1D system associated with steady-
state slab-solitons. This reduces the relationship giving the electric field E to a
partial differential equation in |A(x, z)|2 and I(x, z) = A(x, z). Furthermore,
the actual typical values of the physical quantities involved are such that
ε∇·E
αNaq � 1, whereas in most cases γ ≡ ε∇·E

Naq � 1 is a much stronger, but
still relatively plausible, assumption. For example, in SBN, a 10µm screening
soliton is formed with an electric field scale |E| ∼ 102 kV/m, Na ≈ 1022 m−3,
γ ∼ 0.1 . Neglecting thus γ with respect to one (and even more so γ/α), the
nonlinear differential equation relating the optical field to the space-charge
field reads

∂

∂x

(
E (Ib + I) +

kbT

q

∂

∂x
(Ib + I)

)
= 0, (10)

where the z derivatives have been neglected with respect to x ones, a valid
assumption for paraxial cases, and, in particular, if we are looking for soliton
solutions. The second term on the LHS comes directly from the diffusion
term in eq.(2), assuming βph ≡ 0. We can neglect it in a drift dominated
regime, since in general, kbT/(q`)� |E|, where ` is the transverse spatial
soliton scale (10 µm in the above mentioned case). The space-charge field
thus approximately obeys the relationship

E =
δ

(Ib + I)
' −V

L

1(
1 + I

Ib

) (11)

where δ is a constant that is fixed by the boundary condition of eq.(5). Given
the fact that ` � L, where L is the distance between the crystal electrodes
(sample size in the transverse x direction), δ ' -IbV/L. Given the scalar
electro-optic response of eq.(9) in a ferroelectric (neglecting the quadratic
term), the nonlinearity is of the type ∆n ∼1/

(
1 + I

Ib

)
, i.e., a saturated

Kerr-like nonlinearity. The nonlinear propagation equation is obtained by
substituting eq.(11) into eq.(9), and then substituting this expression for ∆n
directly into the parabolic equation eq.(8). The final nonlinear scalar propa-
gation equation reads

d2u(ξ)
dξ2

=±
(

Γ
b −

1
1+u(ξ)2

)
u(ξ) (12)
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where we have imposed self-consistently the scalar solitary-wave solution form
A(x, z) = u(x)eiΓz

√
Ib, and have normalized the transverse spatial scale to

the so-called nonlinear length scale d = (±2kb)−1/2, i.e., ξ = x/d, with
b = (1/2)kn2r33(V/L). The plus sign corresponds to b >0, and leads to self-
focusing and bright spatial solitons, whereas the minus sign corresponds to
b <0, and describes self-defocusing and dark spatial solitons. Equation (12)
lacks a first derivative, and can be integrated once, giving the relationship
Γ/b = log

(
1 + u2

0

)
/u2

0 for bright beams, and Γ/b = 1/
(
1 + u2

∞
)

for dark,
where u∞ = u(∞) = −u(−∞). It is not solvable analytically, unless u0 �1,
where it reduces to a Kerr nonlinearity, but refers to a situation in which
solitons are not observable . In general, it can be solved numerically and
examples of self-trapped beam profiles are reported, for example, in ref.[12].
Profiles are more similar to a hyberbolic secant function than a Gaussian,
this meaning that in experiments, in an initial evolution, the Gaussian laser
beam is adiabatically transformed into a stable soliton profile. One important
issue is the so-called soliton existence curve [34]. For a given value of u0, the
self-trapped profile has a given width, in terms of the normalized spatial coor-
dinate ξ. This means, experimentally, that for a given input Gaussian FWHM
and a given value of u0, there is a value of V that allows the observation of
a stable screening soliton [33].

Whereas the qualitative success of this treatment is evident, quantitative
agreement is far from trivial. Experiments aimed at drawing a quantitative
comparison between theory and experiment indicate that agreement is not
full, and this is generally attributed to a series of factors [34]. First of all,
the theory is an analytical approximation of the photorefractive process. Sec-
ondly, there is evidence that the small tensorial electro-optic coupling of non-
diagonal terms (see eq.(7)) cannot be wholly neglected, and some of the back-
ground illumination interacts with the soliton supporting pattern, changing
beam trapping conditions. Lastly, as occurs for most experiments involving
photorefractive ferroelectrics, the electro-optic parameters vary from sample
to sample, depending even on the type of crystal configuration, making com-
parison ardous [2] [3]. Yet another complication, or rather, area of research
still to be explored, is represented by transverse instability [56].

Screening Needle-Solitons One of the major breakthroughs of nonlin-
ear photorefractive beam dynamics is the steady-state self-trapping of two-
dimensional beams (2+1D), leading to diffractioless propagation of micron-
size light needles [36] [37], or more generically, two-dimensional waves, such as
vortexes [39]. These have been widely documented in various crystals [43][51]
and configurations, in strict analogy to their one-dimensional counterparts.
Most results indicate that self-trapped beams originating from the focused
fundamental circular symmetric TEM00 mode of a laser are to a good ap-
proximation themselves circular symmetric [57], and that a similar symmetry
conservation seems to hold also for dark solitons [39]. This experimental fact
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does, however, represents a theoretical riddle [26] [58]. Even only from an
intuitive point of view, there is no apparent reason why a circular-symmetric
beam should self-focus maintaining this symmetry, when the very nonlinear-
ity that seems to allow self-trapping is altogether not symmetric. There are
two main asymmetries embedded in the physical process. The first is the
electro-optic response, that is highly anisotropic. The second is the direc-
tion of the bias electric field, that is directed initially along the x direction,
but undergoes inevitable distortion during charge separation in the full-2D
transverse photorefractive mechanism. This riddling situation is even more
startling since some experimental evidence indicates strong asymmetric ef-
fects [59]. The difficulty in understanding the intuitive basis of needle self-
trapping is not mitigated by any sort of quasi-analytical approach, as in the
reduced slab-soliton case. In fact, in the 1+1D case, the propagation equation
is local (see eq.(12)), the non-local nature being contained only in the imposi-
tion of the global voltage drop across the crystal (see eq.(5)). The full 2+1D
propagation equation is highly non-local, in the sense that the nonlinear local
(symmetric) and non-local (asymmetric) interaction terms are comparable.
In the already mentioned Kerr-limit of u2 � 1, the local term dominates
over the non-local one and it is possible to prove the existence of circularly-
symmetric bright and dark solitons and to derive the corresponding existence
curve [26]. This regime, however, cannot be experimentally explored, the ac-
cessible one being that for which u2 > 1. In this important saturated regime,
the analytical approach becomes extremely complicated and the nonlinear
wave-equation does not lend itself to any analytical solution or approach. All
that can really be said is that, from a purely mathematical point of view,
exact circularly-symmetric solutions do not exist [55], in direct contrast with
some experimental evidence. One viable alternative to needle soliton inter-
pretation is to test experimental findings using purely numerical simulations.
Even this approach is however extremely difficult because, apart from the
complexity of the higher-dimensional system, in analogy to slab solitons and
in agreement with experiments, also needle solitons exist when the beam pa-
rameters which provide the boundary conditions for the propagation problem
are chosen so as to lie as close as possible to the existence curve (which is, of
course, a priori, unknown) [54]. More fundamentally, one cannot completely
rule out the possibility that some of the approximations introduced in the
quasi-analytical slab-soliton model may not be valid in the 2+1D case, or
that even the simple Khuhtarev model may not be able to describe in a
satisfactory way the physical situation.

Formally, the theoretical ”problem” arises when introducing an external
bias field, and is strictly connected with the requirement that the space-charge
field is to be conservative. In the 2+1D case, the approximated equation
relating the space-charge field to the optical field (analogous to eq.(10)) reads

∇ ·
(

E (Ib + I) +
kbT

q
∇ · (Ib + I)

)
= 0, (13)
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and its most general solution can be written in the form

E(x, y, z) =
δ (1 + I(x = ±∞)/Ib)

1 + I/Ib
ex- kbT

q ∇·ln (1 + I/Ib)+
δ(1+I(x=±∞)/Ib)

1+I/Ib
∇×v(14)

where ex is a unit vector in the x direction, δ is associated with the boundary
condition of eq.(5), whereas v(x, y, z) is an arbitrary vector field determined
by imposing condition of eq.(6). Looking for z independent intensity profiles
associated with soliton-like propagation, we can take v=(0,0,f(x,y)), where f
obeys

∇2
⊥f −∇⊥f · ∇⊥ ln (1 + I/Ib) =

kbT

q

∂

∂y
(1 + I/Ib) (15)

with ∇⊥=
(

∂
∂x , ∂

∂y

)
[26].

Self-bending Self-bending and self-deflection are a generic signature of sys-
tem asymmetry in photorefractive self-trapping [60][61][62][63][64], yet, given
the significant advances in the understanding of screening solitons, its study
has been mainly associated with steady-state solitons. As mentioned above,
in a conventional optical propagation in a photorefractive, in absence of ex-
ternal applied field and photovoltaic effects, spontaneous beam instability
leads to beam-fanning. This fanning is a distinct signature of space-charge
fields induced by charge diffusion, the only charge separating mechanism in
absence of drift, and originates from spurious inhomogeneities in the intensity
distribution, due to scattering from crystal imperfections. In the presence of
a self-trapped micron-sized beam, however, things are quite different. The
marked intensity inhomogeneity of the nondiffracting beam itself engenders
a small, but not negligible, symmetric charge distribution that gives rise to
an asymmetric field component, and an associated small asymmetric pattern
component in the self-lensing structure, along the entire propagation trajec-
tory (as opposed to what occurs for a diffracting beam, where self-bending
occurs only for the initial stages of propagation). Although self-bending can
be neglected in most configurations of interest, it does play a fundamen-
tal role in limiting the maximum attainable solitary wave propagation in a
photorefractive. This is because self-bending increases nonlinearly along the
propagation axis, and, for a long enough propagation, inevitably leads to
soliton annihilation. More importantly, soliton annihilation is not a merely
geometrical limitation, since it depends, like diffraction, on the transverse
spatial scale, being stronger for smaller beams.

3.3 Photovoltaic Solitons

As mentioned earlier some photorefractive noncentrosymmetric crystals, like
LiNbO3, BaTiO3, and LiTaO3, manifest the so-called photovoltaic effect [65],



Photorefractive Spatial Solitons 13

that can be generally described by introducing in the Kukhtarev model a pho-
toinduced current component (the last term of eq.(2)) [11]. In most situations,
the net effect can be reduced to that of a conventional biased nonphotovoltaic
by introducing an effective bias field, the so-called photovoltaic field. This al-
lows, in analogy to screening solitons, photovoltaic solitons[64] [66] [67] [68]
. Thus, although the underlying driving mechanism is physically different
(giving rise , in some cases, to peculiar phenomenology, as for example in
ref.([69])), their description traces the steps indicated above for screening
solitons. Experimental proof of bright, dark, and vortex solitons, both in the
lower dimensional slab and higher needle cases, has been reported [70] [71]
[72].

3.4 Self-trapping in semiconductors

An interesting and potentially useful extension of photorefractive self-trapping
phenomenology is represented by the observation of slab and needle photore-
fractive screening solitons in semiconductor iron doped indium phosphide
(InP) [40] [41]. These solitons can be interpreted in much the same man-
ner of their ferroelectric counterparts described above, although they do in-
troduce some major differences. First of all, they can be formed with in-
frared beams, at typical telecommunications wavelengths. Secondly, they are
characterized by shorter response times with respect to their ferroelectric
counterparts. Clearly, electro-optic response being weaker than in crystals
with spontaneous polarization, self-trapping is obtained for considerably high
space-charge fields.

3.5 Self-trapping in paraelectrics

Photorefractives, as a large part of electro-optic crystals, are ferroelectrics.
As such, they manifest spontaneous polarization under the critical Curie tem-
perature Tc, passing from their original high temperature centrosymmetric
phase to a noncentrosymmetric phase. Although most electro-optic, and con-
sequently photorefractive, experiments are carried out with ferroelectrics in
the lower symmetry phase, since the strong spontaneous polarization of poled
samples allows considerable responsivity, some research is carried out with
samples in the higher symmetry, also referred to as paraelectrics. To enhance
the electro-optic response, the crystal is brought in proximity of the phase
transition temperature Tc, where the dielectric response is very strong.

Photorefractive screening solitons have been predicted and observed in
paraelectric near-transition KLTN [43] [44] [45] , in analogy to screening
solitons in noncentrosymmetric photorefractives. In this case, the main dif-
ference between the description given above is that the electro-optic response
is purely quadratic, and is generally described by the scalar relationship

∆n = −1
2
n3ε20(εr − 1)2g11E (16)
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where, in analogy to the noncentrosymmetric case, the electric field E is ap-
plied along a given principal axis (in the x direction), the beam is polarized
along this axis, and g11=gxxxx. Given that KLTN undergoes a structural
phase-transition at room temperature, for a range of crystal temperatures T
above the transition, εr takes on values of the order of 103 - 104. This makes
index modulations attainable with reasonably low applied electric fields suf-
ficient to significantly modify beam propagation. The resulting approximate
slab-soliton theory is in all similar to the one described for screening slab-
solitons, and the final propagation equation reads

d2u(ξ)
dξ2

=±
(

1
1+u2

0
−
(

1+u2
∞

1+u(ξ)2

)2
)

u(ξ), (17)

leading to spatial bright slab self-trapping when u2
∞=0 and u(0)=u0, and

the minus sign holds, to dark when u(0)=u0=0, and the plus sign holds.
In analogy to the noncenytrosymmetric slab-soliton description, we have im-
posed self-consistently the scalar solitary-wave solution form A(x,z)=u(x)eiΓz
√

Ib, and have normalized the transverse spatial scale to the so-called non-
linear length scale d=(±2kb)−1/2, i.e., ξ=x/d, with b=(1/2)kn2g11ε

2
0(εr −

1)2(V/L)2, the minus corresponding to bright solitons, whereas the plus holds
for dark self-trapping.

As in the noncentrosymmetric case, needle solitons have been documented
to be strikingly symmetric, and encounter the same theoretical riddles of their
lower symmetry counterparts.

Major differences between photorefractive beam dynamics in ferroelectrics
and paraelectrics arise in the mechanisms associated with charge diffusion,
a relatively marginal process in noncentrosymmetric trapping [73]. In non-
centrosymmetrics, diffusion basically plays the role of an asymmetric seed
that eventually leads to appreciable beam bending, and finally to beam an-
nihilation. In a paraelectric, on the other hand, this is not so. The quadratic
response makes the index modulation associated with the intrinsically asym-
metric diffusion fields (with respect to the beam-intensity symmetry) again
symmetric, thus leading to self-lensing in the absence of external bias [74].

Starting from the relationship between E and I, making the approxi-
mations indicated in section 3.2, and imposing that the applied voltage be
null (in eq.(5)), i.e. J=0, gives an approximate expression for the internal
field E = −kbT

q
∇·I
Ib+I , that, inserted into eq.(7) and in eq.(8), gives the final

nonlinear propagation equation

(
i

∂

∂Z
+∇2

⊥

)
u +

γ1

(
∂ |u|2 /∂X

|u|2 + 1

)2

+ γ2

(
∂ |u|2 /∂Y

|u|2 + 1

)2
u = 0, (18)

where u = AxI
−1/2
b , (X, Y ) = 21/2(kx, ky), Z = kz, ∇2

⊥ = ∂2/∂X2 +∂2/∂Y 2

and γ1 = −k2n2ε20(εr − 1)2g11(KbT/q)2, γ2 = −k2n2ε20(εr − 1)2g12(KbT/q)2
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Neglecting Ib with respect to beam intensity I(X, Y ), this equation admits of
exact analytical solutions, a remarkable feat in itself given the almost absence
of exact solutions in nonlinear propagation problems [75]. These solutions de-
scribe a number of interesting optical phenomena, such as self-modified opti-
cal diffraction and beam aspect-ratio locking, of which partial experimental
observation has been reported [75]. Furthermore, eq.(18) supports a class of
Gaussian and non-Gaussian self-trapped solutions in the form of noncircular
spatial solitons which, for the currently available values of γ, are outside the
reach of observation.

4 Material nonlinearities and solitons

Photorefraction is generally associated with light-matter interaction that does
not lead to actual material distortion and can be generally described by a
linear relationship between the photoinduced electric field E and the resul-
tant crystal static polarization P . Ferroelectrics, in a more general context,
respond to local electric fields in a much more complicated fashion, allow-
ing for relevant local reorientation of spontaneous polarization and hence to
a series of complex domain phenomena. In standard holographic configura-
tions, this highly nonlinear crystal susceptibility has been implemented for
the permanent fixing of a given index patterns. In relation to spatial photore-
fractive solitons, two different phenomena have been investigated. The first is
the fixing of spatial solitons, leading to the permanent imprinting of guiding
structures in bulk samples of SBN [76]. A more complicated mechanism can
be observed in a paraelectric undergoing a structural phase transition. In this
case, light induced diffusion charge fields pin down and seed a self-trapping
guiding structure, giving rise to spontaneous self-trapping [77].

5 Nonlinear beam interaction

As is true for a large variety of nonlinear waves in physics, some of the most
interesting, counterintuitive, and useful phenomenology is encountered when
two or more nonlinear beams are made to interact or collide, and photorefrac-
tive self-trapping makes no exception. Actually, in the last decade, photore-
fractive solitons, in particular screening solitons, have played a leading role in
nonlinear collisional studies. This is mainly connected to the fact that pho-
torefractive solitons are supported by a saturated nonlinearity that forwards a
more varied phenomenology than more traditional Kerr-like waves. Thus, for
example, photorefractive self-trapping occurs both for slab and needle beams
in bulk environments, this greatly increasing the degrees of freedom at work.
Soliton phenomenology has been investigated in SBN for incoherent screening
slab and needle solitons, with the important documentation of beam attrac-
tion and ultimately fusion [63] [78] [79] [80]. Phase dependent attraction and
repulsion of coherent parallel nonlinear screening needle beams was observed
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both in BTO [81] and SBN, along with phase-dependent interaction, fusion,
and birth [82] [83]. Finally, interaction has been used to investigate symmetry
and asymmetry in needle-soliton formation, as mentioned above [57] [69] [59].
More exotic phenomenology directly associated with the higher dimensional-
ity of the system has allowed the documentation of soliton spiraling [46], in
which two needle solitons spiral so as to conserve angular momentum, and
a collision and interaction of a needle soliton with a slab soliton, in which
the different dimensionality of the waves induces intrinsically inhomogeneous
interaction forces [84].

Fig. 7. Coherent interaction of a slab and a needle screening soliton in a photore-
fractive sample of KLTN: (a) input; (b) output in the repulsive case ∆φ0 = π; (e)
output in the attractive case ∆φ0 = 0; (c) and (d) is the same as (b) with needle
and stripe blocked, respectively; (f) and (g) is the same as (e) with needle and
stripe blocked, respectively. Taken from [84]

6 Applications

The intense scientific production associated with photorefractive spatial soli-
tons has to date been mainly directed towards the observation and documen-
tation of the more diverse effects connected to the general traits of soliton
physics. Regarding applications, much has been promised regarding optical
steering and optical beam handling, but little has been actually done. Pi-
oneering experiments demonstrated the basic but important beam steering
capabilities of single photorefractive solitons [24]. The self-induced waveguide
formed at a photoactive visible wavelength can be used to guide a longer wave-
length nonphotorefractively active beam, such as an infrared signal, through
an otherwise bulk environment [85]. Actual beam rerouting is however not fea-
sible, given the time restraints of photorefractive response, that can however
be loosened using intense laser pulses [86]. Notwithsatnding this limitation,
two conceptual applications that are not directly hampered by slow response
have been experimentally demonstrated. The first is a reconfigurable direc-
tional coupler obtained simply by launching two independent parallel solitons,
and using the double wave-guide structure to observe directional coupler at a
longer, infrared, wavelength [49]. The second is connected to enhanced second
harmonic generation through self-induced phase-matching of a micron-sized
beam throughout a sample of KNbO3, this being a direct consequence of beam
self-trapping (similar second-harmonic generation in waveguides) [50]. More
recently, direct electro-optic beam handling in paraelectrics through soliton
beams has been demonstrated, and promises a less ambitious electro-optic,
as opposed to all-optic, beam handling functionality [87].
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