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Polarization and energy dynamics in ultrafocused
optical Kerr propagation
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Developing a complete vectorial description of optical nonparaxial propagation of highly focused beams in Kerr
media, we disclose a family of new phenomena. These phenomena appear to emerge as a consequence of the
mutual coupling of all three components of the optical field. This circumstance, which is intrinsic to the very
nature of Kerr propagation, was previously discarded on the basis of the conjecture that a reduced system is
possible in which only one transverse field component interacts with the longitudinal component. © 2002
Optical Society of America
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Optical beams focused down to spatial scales of the
order of the carrier wavelength undergo nontrivial
dynamics that are associated mainly with nonparaxial
effects. In nonlinear media this regime can become
dominant even with initially quasi-planar (paraxial)
beams. This is the case with the paradigm Kerr non-
linearity, where self-focusing naturally violates parax-
ial conditions and brings the system into the still not
well understood realm of nonparaxial nonlinear propa-
gation. Several initial studies based on a variety
of different scalar approaches resulted in a first im-
portant prediction: The catastrophic beam collapse
associated with the nonlinear Schrödinger model is
bleached by nonparaxiality.1 – 5 More-sophisticated
approaches6 – 11 recently showed how vectorial effects,
neglected in previous studies, play a fundamental role
in determining beam evolution. These approaches
hinge on a partial vectorial correction, taking into
account the role played by the longitudinal f ield
component, allowing a deeper understanding of beam
evolution. For example, beam filamentation,12 previo-
usly thought to be associated with spontaneous noise
amplification, has been attributed to deterministic
symmetry breaking.

In general, our understanding of these effects is
burdened both by the complexity of the associated
nonlinear model and by the limited availability of ex-
perimental results. In this Letter we illustrate a new
theoretical, fully vectorial approach to nonparaxial
Kerr propagation, based on a perturbative treatment
that does not require any a priori simplifying reduc-
tion to a two-component vector system. Our results
indicate a series of qualitatively new phenomena that
stem from mutual energy exchange of the two trans-
verse vector components, which have been structurally
excluded by previous theories.
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In a recent paper13 we derived an appropriate set
of equations that describe propagation of a monochro-
matic f ield in the presence of a real anisotropic refrac-
tive-index perturbation √!

dn relative to a homogeneous
background and that contains all-order nonparaxial
corrections in the smallness parameter, e � l��n0r0�,
where l is the wavelength in vacuo, n0 is the
linear refractive index, and r0 is the transverse beam
scale (waist). This derivation, starting directly from
Maxwell’s equations with no approximations and
without neglecting any vectorial contribution, is exact
to all orders in e.

To tackle Kerr propagation characterized by a
complex Hermitian √!

dn , we formulate the appropri-
ate equation that describes the evolution of the for-
ward-traveling transverse part, A��r�, z� � exp�ikz� 3

E��r�, z�, of the f ield, where k � vn0�c and r� � xx̂ 1
yŷ . Considering only terms up to the second order in
e, we are able to predict and describe all relevant
phenomena associated with nonparaxial effects.
For a dielectric-constant distribution of the type
e
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dn is a 3 3 3 Hermitian
tensor representing the refractive-index perturbation
and �I$�ij � dij , the propagation equation reads as
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where =� � x̂≠x 1 ŷ≠y, dn0 � dnxzx̂ 1 dnyzŷ , and
√!
dn� is the 2 3 2 tensor obtained from √!

dn by sup-
pression of the third row and column, and the stan-
dard row-by-column product is implicit in multiplying
tensors and vectors. Once Eq. (1) is solved for A�, the
longitudinal component Az can be derived from it, to
first order in e, by means of the relation [see Eq. (F7)
of Ref. 13]

Az �
i
k

=� ? A� . (2)

We emphasize that Eq. (1) differs from Eq. (31) derived
in Ref. 13 in that Eq. (1) allows �√!

dn �ij to be complex.
For a Kerr medium,
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where n2 is the so-called nonlinear refractive-index co-
efficient.14 Inserting Eqs. (3)–(5) into Eq. (1) and us-
ing Eq. (2), we obtain
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which describes nonparaxial Kerr nonlinear
propagation.

Equation (6) is fully vectorial and does not admit of
linearly polarized solutions. In fact, even if the y com-
ponent Ay is assumed to be zero at z � 0, it will not
remain so, because of the presence of terms contain-
ing Ax alone in the right-hand side of the y compo-
nent of Eq. (6). Clearly, this mathematical property
does not always require that one use a fully vecto-
rial treatment to acquire a more comprehensive under-
standing of propagation. In fact, previous theoretical
predictions are based on the conjecture that mutual
coupling between Ax and Ay gives negligible effects.
The preliminary results below, however, show that, in
the highly nonparaxial regime, following self-focusing,
full vectorial coupling is one of the fundamental mecha-
nisms driving beam evolution.

We carried out numerical simulations based on
Eq. (6) in its appropriate normalized form. Given
the characteristics of our model, we employed a
standard split-step fast Fourier transform method
and analyzed the dynamics for an input Gaussian,
linearly x-polarized beam. The beam’s spot size, r0,
fixes the value of the perturbative parameter, e. We
have thus investigated beam self-focusing dynamics
(Figs. 1 and 2).

When the input peak power exceeds the critical
value, Pc, prescribed by standard paraxial theory,
ultrafocusing takes place. In this ultrafocused (non-
paraxial) regime, Ax becomes an efficient source
for the orthogonal transverse component, Ay . As a
result the polarization acquires a structure. Con-
sidering the evolution of the Poynting vector, S
(Fig. 1), we find that (at the considered order in e)
the longitudinal component, Sz, remains the same
as that predicted by paraxial theory. However, in
the nonparaxial regime Sx and Sy come into play
and give rise to lateral dipolelike emission. More
precisely, we note that, whereas during self-focusing
(z , 4Zd, where Zd � kr02 is the diffraction length)
the (weak) transverse components of S are directed

Fig. 1. Transverse Poynting vector S� distribution during
collapse according to Eq. (1). (a) Self-focusing up to z �
4Zd. (b) Anisotropic structures at z � 4.18Zd. (c) Onset
of ultradiffraction at z � 4.24Zd.
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Fig. 2. Spatial spectra (a), (c) Ax and (b), (d) Ay , according
to Eq. (1) for (a), (b) z � 4.04Zd and (c), (d) z � 4.20Zd.
Note the remarkable parametriclike excitation of strongly
tilted modes.

toward the center of the beam [see Fig. 1(a)], in the
ultrafocused condition �z . 4Zd� the vector field,
S�, evolves into a saddlelike pattern characterized
by x-directed emission and y-directed compression
[Fig. 1(b)]. This highly anisotropic configuration is
enforced by coupling back of energy from Ay to Ax.
Clearly this mutual energy exchange between Ax and
Ay is the mechanism leading to the breaking of the
circular symmetry of the beam.

The simulation is carried out for the case of
l��n0r0� � 2p0.06 � 0.38 (corresponding to s � 0.06
in the notation of Ref. 10), with input peak power
P � 1.9Pr [with Pr � ce0l2��8p2n2r02�] very close to
the critical power for the collapse,10 which appears,
according to our simulations, in the proximity of
z � 4Zd.

Inspecting the spectral components of Ax, y (Fig. 2) in
the ultrafocusing regime, we see that the orthogonal
(to the initial) polarization develops a ringlike struc-
ture denoting lateral emission [Fig. 2(b)]. The large
angle of the corresponding anisotropic cone is indeed
remarkable. Further propagation along z also gives
rise to a transfer (and rotation) of this structure to
the Ax component [Figs. 2(c) and 2(d)]. Nonlinear cou-
pling between spectral components appears to have a
parametric origin; it is maximum for a given angle and
has a specif ic threshold.

Furthermore, our simulations indicate that the ul-
trafocusing regime is superseded by an ultradiffract-
ing regime [Fig. 1(c)], and no periodic features in z
emerge. In contrast with the paraxial approximation,
where S� is totally neglected even in its realm of valid-
ity, our results describe its role both at the onset and
during ultrafocused propagation.

Formally, Eq. (6) can be compared with the exist-
ing versions of the propagation equation only if we
set Ay � 0, which amounts to assuming that Ay re-
mains negligible over the whole propagation distance.
In this case our expression reduces to
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which coincides with the one worked out in Ref. 10 by
means of a different approach. This is not the case
for other versions of the propagation equation, which
do not coincide either with our expression or among
themselves. For the addressable case of Ref. 10, the
simulation described above gives completely differ-
ent results, starting from the very same boundary
conditions.

In conclusion, we believe that Eq. (6) represents, up
to terms of second order in the smallness parameter
e � l��n0r0�, the correct version of the nonparaxial
vectorial equation describing optical propagation in
Kerr media. Numerical simulations indicate that a
new family of propagation effects emerges in which full
vectorial coupling of the transverse components plays
a central role, in contrast with previous predictions.
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