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We report the observation of steady-state two-dimensional photorefractive self-trapping and
screening spatial soliton formation in a sample of potassium-lithium—tantalate—niobate in the
centrosymmetric paraelectric phase. 1©98 American Institute of Physics.
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Spatial solitons in centrosymmetric photorefractive me-two-dimensional(2D) spatial solitons[(2+1) D] in near-
dia have been predictt@nd were recently observ8dlhis  transition paraelectriccentrosymmetricKLTN. This obser-
interesting type of light—matter interaction is brought aboutvation should pave the way, as it did for noncentrosymmetric
by a mechanism analogous to the one at the basis of spatiatreening soliton$! to configurations in which 2D soliton-
solitons in noncentrosymmetric photorefractive materialsjnduced waveguides are used to guide beams of wavelengths
more specifically, to the so-called photorefractive screeninghat do not participate in the nonlinear confinement mecha-
solitons®>~" Although the theory™® is quite elaborate, the nism. This has several important potential applications for
mechanism that gives rise to soliton formation is rather in2D configurable interconnects and, perhaps more important,
tuitive. Essentially, an optical beam propagating in the phofor nonlinear frequency conversion in tunable soliton-
torefractive(dielectrio material generates a photoinduced in- induced waveguide.
ternal space-charge field that modulates the local index of Our experiments are performed in an intermediate tem-
refraction via the electro-optic response. In noncentrosymperature range, that is, where phase-transition effects are not
metric crystals the electrooptic response is linear in the podrastic yet the electro-optic response is enhanced enough to
larization (the Pockels’ effegt whereas in the centrosym- allow soliton observation at moderate applied fields. Here, as
metric case the coupling mechanism is quadratite  for the more “conventional” noncentrosymmetric case, the
quadratic electro-optic effectin this case the internal photo- (2+1) D soliton formation mechanism is extremely compli-
induced electric field generates a local polarization by discated and a complete theoretical description of the screening
torting the paraelectric cubic crystal structure inducing a loprocess is not available. The only understanding we have
calized ferroelectric phase. In a previous papere have  draws from experiment and analogy to tfie-1) D case
shown the existence of one-dimensiond+1) D] photore- We perform our experiments on a sample of 52168
fractive solitons in centrosymmetric paraelectric potassium-x6.4 mm KLTN cut along the principal crystalline axes
lithium—tantalate—niobat&LTN), a material which under- (which are all identical to each other, but we denote them
goes a ferroelectric—paraelectric phase transition afere as, y, z respectively. The crystal has a ferroelectric—
temperatures close to room temperature and exhibits a strofghraelectric phase transition=.8.5 °C as can be seen from
quadratic electro-optic respone. measurements of, as a function of temperature shown in

From a fundamental view point, investigating spatial Fig. 1. Figure 1 also shows the temperature hysteresis typical
solitons in centrosymmetric photorefractive media, and, inof first-order phase transitions. The relevant quadratic
particular, at the vicinity of the ferroelectric—paraelectric glectro-optic coefficient in our experimental configuration
phase transition, is important because it brings about severgdnown in Fig. 2iS o= Uyxx= 0.13 C'2 m* as measured in
intriguing effects related to near-transition phenomena ang standard cross-polarizer experiment, and the index of re-
paraelectric physics. Close to the ferroelectric—paraelectrigction isn,=2.4 (atA=514 nn). The basic setup is similar
phase transition the electro-optic response is enhanced, aggl previous experiments!*2and is schematically illustrated
is affected by temperature and polarization hysterésis Fig. 2. A single mode argon ion laser operating\at514
first-order phase transitiopslocal light intensity (through  m emits ay-polarized beam. This beam is sent through a
the so-called photoferroelectric effégtand the local electric /> waveplate that rotates this polarization at an adjustable
field. ] ] ] angle and is split into orthogonal polarized components by a

In this letter we present an experimental observation Of)olarizing beam splittefPBS. The transmitteck-polarized
beam(soliton forming beamnis first expanded and then fo-
3Electronic mail: segev@ee.princeton.edu cused by a 200 mm spherical lens onto the input face of the
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FIG. 1. Measured values of, as a function of temperatur€. The two
curves represent values measured for decreasiggares and increasing

(triangles temperatures FIG. 3. Photographs and profiles of the beam at the input and output faces

of the crystal.

crystal. The reflecteg-polarized beam serves as the back-yigths in both directions We attribute it primarily to local
ground beant:it IS first expanded and then recomb!ned With striations in the crystal that affect only the margins of the
the focused soliton beartby means of a beamsplitderso  peam(as we always try to launch the soliton as far from the
that these copropagating beams experience the same absoggiations as possible, typically “sandwiching” it between
tion in the crystalwhich makes stationary solitonlike propa- o striation lines.
gation pogsiblé. The background beam is illuminating the  onpe-dimensiona(1D) spatial soliton formation occurs,
crystal uniformly at all times. The beam at the ingulth a5 predicted by theotywhen the minimal set of soliton pa-
zero field applied and the outputwith and without field  rameters satisfy a particular relationship, known as the soli-
applied faces of the crystal is imaged onto a charge coupleqon existence curve. Essentially, given a valuaipfand an
device(CCD) camera and recorded. The crystal is kept at dnpyt beam width at a fixed, there is a restrictedrather
constant temperatur€ and a voltageV is applied between narrow range of values of applied voltagé that can give
the x faces of the crystal. . ~ rise to solitary propagation solutions. Applied field values
In Fig. 3 we show typical experimental results. In this that are too low do not fully compensate for the diffraction,
particular case, the intensity rafithe ratio between the peak \yhereas values that are too high try to transform the beam
soliton intensity and the background intensitf), is roughly  into a soliton that is much narrower than the incident beam,
156 with an applied voltage &f=1.15 kV atT=29 °C. The thereby leading to instabilit}?
input beam, shown in the left column, has a intensity full In analogy to the1+1) D case!? one can plot the soli-
width at half maximum(FWHM) of 7 um (equal in the  {on formation experiments on an existence curve that shows
horizontal and vertical directiongnd, in the absence of ap- the soliton width(in normalized units as a function of in-
plied field, diffracts to approximately 9@m (middle col-  tensity ratiou?. Since the theory of2+1) D solitons in
umn, as expected from normal Gaussian beam propagatioyhotorefractive centrosymmetric media is not available yet,
When the appropriate field is applied, the beam self-focusege se the scaling of the existiig+1) D theory that has
to 7 um in the horizontal direction and 8m in the vertical  peen experimentally verifietAs in the (1+1) D case,two
direction (right column). Note that the astigmatism is very gimensional soliton formation is observed only for particular
small and is mostly in the tail of the vertical profile. In our \5jyes of V, given a value of,uand a fixed input beam
experiments, with the proper voltage applied, this slightyigth, Figure 4 shows the experimental points in parameter
astigmatism is never larger thanu (the difference in the  gpace for which2+1) D steady-state solitons are observed.

The vertical scale is the normalized soliton intensity FWHM
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FIG. 4. Experimental 2D soliton existence points. The solitons in this plot

FIG. 2. Experimental setup and crystalline configuration. have all been observed far=29 °C.
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trapping is observedin units of Aé=Ax/d, where d= an agreement between Fondazione Ugo Bordoni and the lItal-
(—2kb) Y2, b= (k/n,)[(1/2)n3gene(e,— 1)2(V/1)?], and ian Telecommunications Administration. The research of one

k=2mn,/\, where\ is the wavelengthV is the applied author (M.S.) was supported by the U.S. National Science
voltage, andl the width of the crystal in the direction. ~ Foundation. The research of two authdEsR. and A.J.A.
Existence points for low intensity ratiosi{<1.5) are not Was supported by the Ministry of Science of the State of
available, as we were never able to get soliton formation irflSrael.
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