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Recent analytical results in the frame of photorefractive spatial-soliton propagation are exploited to derive a
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1. INTRODUCTION
In recent decades a good deal of attention has been at-
tracted by materials exhibiting photorefractive (PR) ef-
fect, such as barium titanate (BaTiO3) and lithium nio-
bate, with the main interest being focused on such
applications as two-wave mixing (TWM) and holography.
The standard description of the effect is based on the so-
called band transport (or Kukhtarev’s) model,1 which has
been of continued and established success. The model,
however, is highly nonlinear, and analytical solutions are
approximate and limited in applicability. To date there
are essentially four different approaches to the solution of
the model equations (see, e.g., Refs. 2, 3, and 4), none of
which are able to provide, in a straightforward manner,
all of the essential relationships that tie external param-
eters, such as the external bias voltage and beam size and
shape, to the space-charge field generated within the
crystal. The most common approach is a first-harmonic
linearization of the basic equations (see, e.g., Ref. 3,
Chapter 3), whose solution provides an expression for the
space-charge field. A second approach, particularly ame-
nable to numerical implementation, is to solve the prob-
lem in Fourier space5 while keeping as many components
as is feasible. A third approach, maybe the closest to
what one may call a complete analytical solution, involves
a partial linearization of the rate equation governing the
effect and keeps all other nonlinearities6; however, this
approach fails to provide a good description in the pres-
ence of an external-bias voltage. A fourth approach is to
consider the analytical problem, solving for the ionized
donor density instead of the space-charge field.7 Al-
though numerical simulations have provided useful re-
sults (see, e.g., Refs. 8 and 9), no clear and concise full
nonlinear analytical treatment is available.

The Kukhtarev model has recently been employed to
describe self-trapped nonlinear propagation, leading to
the formation of the so-called spatial-screening solitons,
in 1 1 1 and 2 1 1D (where D is dimensions).10–12 The
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analytical approach used with this model is different from
the ones described above in that it deals with an optical
beam of arbitrary shape resulting from the superposition
of a continuum of plane waves and does not resort to pre-
liminary linearizations. In particular, it provides a
single differential equation relating the electric field E
and the optical intensity I. Under suitable conditions
this equation can be linearized, and an explicit solution
can be found in both the 1 1 1D and the 2 1 1D
cases.10–12

In this paper we investigate the 1 1 1D case of TWM
geometry, in which two spatially-limited monochromatic
coherent waves interact inside a PR crystal. To this end
we start directly from the differential equation for the
electric field introduced in Ref. 10 and develop an appro-
priate iterative scheme for its solution. This allows us to
recover in a simple and straightforward way the results
obtained in the standard treatments,3,6 and extend them
to include beam-width effects, mixing efficiency, and
higher-order spatial harmonics.

To support these findings, we perform an experiment in
a sample of BaTiO3. More precisely, we study the first
and second space-charge field, harmonic Bragg scattering,
and TWM efficiency enhancement that is due to an exter-
nal biasing voltage in a high-modulation-depth situation,
and we also analyze the dependence of TWM efficiency on
beam size.

2. ANALYTICAL MODEL AND RESULTS
The PR effect is the modulation of the index of refraction
of a nonlinear anisotropic crystal owing to a light-induced
internal electric field E. The index modulation is due to
the Pockels effect and is proportional to the space-charge
field induced by the migration of free charge carriers re-
leased by donors in illuminated areas and trapped in dark
regions. The migration mechanism itself can be of vari-
1998 Optical Society of America
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ous kinds. In this paper we study the case of only one
type of charge carrier (electrons) and neglect photovoltaic
effects.

The model can be represented, in steady-state condi-
tions and restricting the analysis to one dimension, by the
following set of equations3:

gNeNd
1 5 ~b 1 sI !~Nd 2 Nd

1!, (1)

~d/dx !~eE ! 5 r, (2)

r 5 q~Nd
1 2 Na 2 Ne!, (3)

~d/dx !J 5 0, (4)

J 5 qmNeE 1 mkbT~d/dx !Ne , (5)

along with the external condition

V 5 2E
2l/2

l/2

E dx, (6)

where Nd and Na are, respectively, the donor impurity
and the acceptor impurity densities, Nd

1 and Na
1 the asso-

ciated ionized densities, and Ne the conduction band elec-
tron density; in addition, E, I, J, r, T, and V are, respec-
tively, the electric field, light intensity, density of charge
current, charge density, absolute temperature, and ap-
plied external voltage; x is the transverse coordinate, l
the crystal size in this direction, and g, b, s, e, m, 2q, and
kb the electron recombination rate, rate of thermal exci-
tation, photoexcitation cross section, low-frequency dielec-
tric constant, carrier mobility, electron charge, and Bolt-
zmann’s constant, respectively.

In obtaining a single differential equation, we neglect
in Eq. (3) Ne with respect to Nd

1 and Na , which is valid in
most situations of interest (Ne ! Na ! Nd). Equation
(4) implies that J does not depend on x and therefore as-
sumes a constant value Jc , that is, J 5 Jc . Equation (2)
can be used to express Nd

1 as a function of dE/dx. Insert-
ing this relation into Eq. (1), we are able to express Ne as
a function of dE/dx. Finally, introducing the resulting
expression for Ne into Eq. (5) and using J 5 Jc , we ob-
tain, without resorting to preliminary linearizations, a
differential equation for E alone that reads as

qm~b 1 sI !S Nd 2
e

q

d

dx
E 2 NaD

g S e

q

d

dx
E 1 NaD E

1
d

dx F mkbT~b 1 sI !S Nd 2
e

q
d

dx
E 2 NaD

g S e

q
d

dx
E 1 NaD G 5 Jc .

(7)

Once this equation is formally solved, the condition ex-
pressed in Eq. (6) determines the value of the current Jc .
Vachss et al.13 have treated Eq. (7) in a simplified ap-
proximation in which, however, TWM cannot be de-
scribed. To deal with Eq. (7), we first recast it in an ap-
propriate dimensionless form by introducing the
adimensional quantities
Y [
E

EDb
, j [ kDb x,

Q [ 1 1
I
Id

, G [
Jc

qmb1EDb
, (8)

where EDb 5 (kbT/q)kDb , kDb is the so-called Debye wave
number defined by the expression kDb

2

5 @q2Na /(ekbTNd)#(Nd 2 Na), Id 5 b/s is the dark il-
lumination, and b1 5 b/g. After defining a 5 (Nd
2 Na)/Na and d 5 ekDbEDb /(qNa), we can rewrite Eq.
(7) as

QYS a 2 d
d

dj
Y D

S 1 1 d
d

dj
Y D 1

d

dj FQ

S a 2 d
d

dj
Y D

S 1 1 d
d

dj
Y D G 5 G. (9)

We consider the standard case of Na ! Nd . This yields
d > 1, kDb

2 > q2Na /(ekbT), and a @ 1. Furthermore, to
proceed, we neglect dY/dj with respect to a. This last
approximation is warranted both by the fact that a is
much greater than 1 and by the fact that dY/dj is small
with respect to 1 in our approach, as we assume below.
With these approximations, Eq. (9) becomes

QY

S 1 1
d

dj
Y D 1

d

dj F Q

S 1 1
d

dj
Y D G 5

G

a
[ g. (10)

It should be noted here that taking udY/dju ! 1 also im-
plies some constraints on r through Eq. (2). It can be
shown that, with these restraints, Nd

1 ' Na . This im-
plies that, although it is generally true that Ne ! Na
! Nd , this does not directly authorize us to neglect Ne in
Eq. (3). An approximate condition for the simultaneous
validity of the two approximations is that Ne /Na
! Na /Nd , this condition being generally true for the
light intensities normally used.

To tackle Eq. (10), we introduce appropriate approxi-
mations and then employ an iterative method.

To implement our approximation scheme, we need to
recall the main features of a typical TWM setup [see Fig.
(1)]. Two coherent monochromatic beams, E1(x, z, t)
5 A1 exp(k1x x 1 ik1z z 2 ivt) and E2(x, z, t) 5 A2
3 exp(k2x x 1 ik2z z 2 ivt), are made to interfere inside
the PR crystal at a certain angle u (symmetrically, k1x
5 2k2x) as shown, with the resulting intensity pattern
having the expression

I 5 I0@1 1 m cos~Kx !#, (11)

where I0 5 uA1u2 1 uA2u2 5 I1 1 I2 , m 5 2uA1A2* u/I0 is
the modulation depth, and K 5 k1x 2 k2x 5 (4p/
l)n sin@u# is the transverse grating vector. Accordingly,
the main scale of the variation of I is associated with the
grating vector K (apart from an eventually slowly varying
beam-shape factor). We must now take into account that
to the dark irradiance Id 5 b/s introduced above one has
to add a background illumination Ib that is unavoidably
present inside the crystal because of the experimental
conditions (actually, the typical case is Id ! Ib). As a
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consequence, it is convenient to modify appropriately the
normalization of I introduced above, so that

Q 5 1 1
I0

Ib 1 Id
@1 1 m cos~xj!#

5 1 1 Q0@1 1 m cos~xj!#

5 ~1 1 Q0!@1 1 m1 cos~xj!#, (12)

where we have set Q0 5 I0 /(Ib 1 Id), x 5 K/kDb , and
m1 5 m/(1 1 1/Q0).

Returning to Eq. (10) and solving for Y, one obtains

Y 5 2
Q8

Q
1

g
Q

1
g
Q

Y8 1
Y9

1 1 Y8
, (13)

where here the prime indicates a derivation with respect
to j.
We consider Eq. (13) under the following approximations:

uY8u ! 1, (14a)

uY9u ! U2Q8

Q
1

g
Q

1
g
Q

Y8U. (14b)

Conditions (14) imply that the zero-order solution of Eq.
(13) is

Y ~0 ! 5 2
Q8

Q
1

g
Q

[ Yd 1 Ydr , (15)

while a first correction in the drift regime (uQ8/Qu
! ug/Qu) is given by the term (g/Q)Y8. To impose con-
ditions (14), we can rewrite them consistently in the form

uY08u ! 1, (16a)

uY ~0 !9u ! U2Q8

Q
1

g
Q

1
g
Q

Y ~0 !8U. (16b)

Equation (15) is composed of two terms. The first is es-
sentially the diffusion field, which we indicate with Yd ;
the second is the drift term, which we indicate with Ydr .
Making use of the expression for Q given in Eq. (12), a
sufficient condition for the validity of relation (16) can be
proved to be14

e ! 1, uYdru !
1
e

, (17)

Fig. 1. Basic experimental arrangement for measuring TWM,
Bragg diffraction and TWM beam size dependence.
where (see Appendix A)

e 5 H xm1

1 2 m1
m1 .

1
2

x m1 ,
1
2

. (18)

We consider now the case in which m1 /(1 2 m1) ' 1. In
the drift regime (uYdru @ uYd) conditions (17) imply that
Eq. (13) can be approximated to the zero order in e by

Y 5
g
Q

1 o~e!. (19)

This solution describes the modulation of the crystal im-
pedance that is due to the light intensity pattern Q. It
completely neglects diffusion effects and fails to describe
the TWM between the two writing beams introduced
above because the field is in phase with the light distri-
bution. Taking into account the terms of first order in e,
we obtain iteratively the first-order approximate solution

Y 5 2
Q8

Q
1

g
Q

2 S g
Q D 2 Q8

Q
1 o~e2!. (20)

This expression has, in addition to the zero-order drift
contribution Ydr , the Yd contribution and a term that
couples drift and diffusion [proportional to the square of
the applied voltage V, see Eq. (21)]. The first and the
last terms on the right-hand side describe possible TWM
between the two beams. The last term describes the en-
hancement of TWM with increasing external voltage.
Equation (20) therefore appears to possess all the ingre-
dients needed for a proper description of a quite general
case (within the limitations imposed by the approxima-
tions used). To give a final form to Eq. (20), we impose
condition (6). The approximate expression for g that we
obtain, valid for solutions of both Eqs. (19) and (20), is
(see Appendix B)

g 5 F 2V

lEDb
G 1

~1 2 lb /l ! 1 ~lb /l !/@~1 1 Q0!~1 2 m1
2!1/2#

,

(21)
where lb is approximately the transverse dimension of the
region in which Q is sensibly larger than 1. If we assume
that V , 0, and (1 1 Q0)(1 2 m1

2)1/2 . 1, Eq. (21) be-
comes

g 5 F 2V
lEDb

G~1 1 Q0!~1 2 m1
2!1/2 5 gmax , for

lb

l
5 1,

(22)

g 5 F 2V
lEDb

G 5 gmin , for lb 5 0. (23)

Eq. (21) allows us to obtain the explicit solution from Eq.
(20). Condition (17) on Ydr can be uniformly satisfied for
all values of lb if we impose

gmin !
1

e

1 2 m1

~1 2 m1
2!1/2

. (24)

For the diffusive regime, in which the constant current
Jc is approximately zero (g > 0) and uYdru ! uYdu, condi-
tions (17) imply that the lowest-order solution in e is
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Y 5 2
Q8

Q
1 o~e 2!. (25)

The electric field worked out in Ref. 6, valid for lb /l 5 1,
coincides with the expression given in Eq. (15), supple-
mented by Eq. (22). In our approach this solution is of
intermediate order in the drift regime; that is, the diffu-
sive term Yd is, under conditions (17), of the same order
as the first correction, with the full expression given by
Eq. (20) [along with Eq. (22)]. On the other hand, in the
purely diffusive regime the two expressions coincide.
Furthermore, it is easy to show that for m ! 1 the ex-
pression given by the standard approach (see, e.g., Ref. 3,
Chapter 3) coincides with Eq. (20) to the first order in
e > x.

3. EXPERIMENT
To test some of the results found in Section 2 and to give
an example of the possible implementations of the novel
approach, we carried out a set of experiments on a sample
of standard BaTiO3. Primarily, two innovative results
were tested. The first is the TWM and Bragg diffraction
enhancement that is due to an external bias voltage in
the high-m configuration. The second is the dependence
of the electric field on the (limited) size of the beams de-
scribed by Eqs. (20) and (21).

To relate the results obtained in the previous section to
experiments, we must recall that a static field E gives rise
to a linear modulation of the index of the refraction tensor
given by (see, e.g., Ref. 15)

D@1/n2# ij 5 rijkEk , (26)

where rijk are the components of the electro-optic tensor.
In our experimental configuration, as described below,
Eq. (26) is reduced to the simple form (see, e.g., Ref. 3,
Chapter 4)

Dn > 21/2 rn3E, (27)

where r and n are the relevant electro-optic coefficient
and refractive index, respectively. In addition, we recall
that the Bragg diffraction efficiency h i of the grating har-
monic i (i 5 1, 2, 3, ...) is given by (see, e.g., Ref. 8)

h i > F n2rkR

4 cos~u i!
LE ~i !G2

, (28)

where kR is the wave number of the Bragg reflected light,
L is the thickness of the crystal in the direction of propa-
gation of the light, E (i) is the space-charge-field spatial-
harmonic component of order i, and u i is its Bragg-
matching angle.

TWM coupling with higher harmonics in the index
modulation, owing to higher harmonics in E (i . 1), is
an extremely complicated issue (see, e.g., Ref. 4, Chapter
7) and is beyond the scope of this paper. Here we ana-
lyze only coupling between the two writing beams, this
being justified both by the facts that in our conditions
TWM is generally small and that higher-order compo-
nents are a correction to the first harmonic. In these ap-
proximations, we take the TWM energy-coupling constant
g as being proportional to the antisymmetric part of the
first component E (1)

a of E, thus obtaining (see Ref. 3,
Chapter 4)

g 5
pn3r

l cos~u!
uE ~1 !

a u. (29)

Results for TWM are given in the form of the amplified-
beam gain ratio

I2~L !

I2~0 !
5

1 1 M

1 1 Me2gL exp~2a8L !, (30)

where M 5 I1(0)/I2(0), a8 is the material absorption
constant, I1(0) and I2(0), respectively, are the pump and
the amplified beam intensities before entering the crystal,
and I2(L) is the value of the amplified beam intensity at
the exit face.

A. Experimental Setup
The setup is based on a typical TWM or two-wave holo-
graphic geometry and is schematically illustrated in Fig.
1. A single-mode argon-ion laser emits a l 5 515 nm
vertically polarized beam. A l/2 wave plate can be used
to rotate the polarization of the beam, thus making it par-
allel to the plane of the optical table (parallel to the plane
of the figure). The beam is expanded by means of a pair
of lenses, and an adjustable slit selects the central part of
the beam, thus determining its transverse dimension (lb).
A beam splitter separates this beam into two, generating
the two interfering beams (E1 and E2), each of which is
separately attenuated by a neutral density filter and
made to impinge on a BaTiO3 crystal, thus giving the pos-
sibility of controlling the value of m. The 4.8(a) mm
3 3.8(b) mm 3 4.7(c) mm crystal is cut along its principal
axes and is oriented so as to have its c axis parallel to the
plane of the page. The geometry is entirely symmetric;
that is, the two interfering beams give rise to a grating
vector K that is parallel to the c axis. The angle between
the two interfering beams outside the crystal is 2uext
> 7.16° (corresponding to 2u > 2.98°). The relevant
electro-optic coefficients of the sample have the measured
values of r33 > 110 pm/V and r13 > 12 pm/V, whereas the
absorption coefficient has a value of a > 2.9 cm21 at
l 5 515 nm (a single-crystal-face reflection was taken to
be ;4%). By means of gold electrodes deposited on the
c-axis faces of the crystal, an external voltage source sup-
plies the bias voltage V. The beam that experiences gain
(E2), owing to the orientation of the crystal, is detected by
a silicon photodiode, and the data sampled is transferred
to a personal computer. The pump beam (E1) is moni-
tored via a second detector, and, finally, a (extraordinarily
polarized) He–Ne laser beam operating at l 5 632.8 nm
and at approximately a 1-mW power level is directed by
means of an adjustable steering system on the crystal so
as to be Bragg matched with the various harmonics of the
grating written by the two interfering beams. Bragg re-
flection is detected by a third silicon photodiode, and data
is again transferred to the personal computer.
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B. TWM Effects in the Holographic Regime
(High m, x ! 1)
When attempting to write a hologram inside a PR crystal
such as BaTiO3, one is faced with the problem of beam
coupling among the writing beams. Beam coupling, in
basic holography, is an unwanted effect because in thick
crystals it can alter considerably the value of the modula-
tion depth m along the direction of propagation of the
light and, hence, the overall diffraction efficiency of the
volume hologram.16 One way to limit this effect is to
make the scale of variation of the light intensity K small,
thereby reducing the diffusive out-of-phase component of
the hologram grating and applying an external voltage.
Because TWM is at maximum approximately when K
> kDb (see, e.g., Ref. 3, Chapter 4), in a basic holographic
setup K ! kDb is chosen. Furthermore, in the case of
BaTiO3 (in which r13 ! r33), one can write the hologram
with ordinary polarized beams and read it with an ex-
traordinary beam. This enables one to limit drastically
the effects of TWM, thereby maintaining strong diffrac-
tion efficiencies in the read-out phase. If we were now to
consider the expression given in Eq. (15) (as is done, for
example, in Ref. 6), it would seem that an external volt-
age would enhance diffraction efficiency without modify-
ing TWM coupling. In effect, in this regime, where con-
ditions (17) are satisfied, we should adopt Eq. (20), from
which it is apparent that enhancement by external volt-
age does enhance TWM coupling by means of the term
that couples drift and diffusion mechanisms.

In Figs. 2(a) and 2(b) are reported, respectively, the ex-
perimental results of first- and second-harmonic Bragg
diffraction enhancement of the He–Ne beam, with m1
> 0.3, x > 0.1, K > 1.5 3 106 m21, and kDb > 1.1
3 107 m21, as measured from the angular dependence of
low m diffusive TWM coupling, and, finally, lb 5 l. We
have superimposed onto the experimental plots the theo-
retical fit obtained by our taking the first and second har-
monics of Eq. (20) and by using Eq. (28), while neglecting
the third term on the right-hand side of Eq. (20), which is
of higher order in our approach as regards to Bragg dif-
fraction efficiency (making the dependence of all diffrac-
tion orders quadratic in the external applied voltage). In
this case the smallness parameter is e > 0.4. The data is
obtained by use of ordinarily polarized writing beams and
an extraordinarily polarized reading beam. As expected,
no apparent TWM effects were observed. We obtained
curve fits by varying two parameters, m and r33 , taking
m > 0.27 and r33 5 80 pm/V. The value for r33 is lower
than the value independently measured (>110 pm/V at
515 nm, even though here the wavelength is 633 nm).

To assess the influence of TWM on diffraction effi-
ciency, we performed the same experiment with extraor-
dinary polarized writing beams, again with m > 0.3.
Zero-voltage first-harmonic diffraction was measured to
obtain h1 > 0.015. This indicates a diminished diffrac-
tion with respect to the above case when TWM can be ne-
glected (h1 > 0.020). Expected diffraction in this case
(by the expressions given in Ref. 16) is h1 > 0.017.

Under these same conditions, but with extraordinary
writing beams, TWM coupling was monitored for m1
> 0.91, m1 > 0.96, and the results are shown, respec-
tively, in Figs. 3(a) and 3(b), along with the theoretical fits
obtained by our taking the first harmonic of Eq. (20) and
using Eq. (29). We obtained fits by letting the modula-
tion depth m vary. The fitting values for m1 in the two
curves were, respectively, m1 > 0.84, m1 > 0.92. Apart
from this discrepancy, these results cannot be explained
(even qualitatively) by our relying solely on Eq. (15). The
gain ratio value at no applied voltage is determined by
the material absorption (constant for both cases) and the
zero voltage TWM that is due to the diffusion-driven
space-charge field (relatively strong in BaTiO3), which is
dependent on m through Eqs. (20), (29) and (30). Quali-
tatively, a higher m corresponds to a higher zero-applied-
voltage TWM gain.

C. Effects of Beam Size
One of the features of the approach described in the pre-
vious Section is that it can take into account beams with
finite dimension with respect to the crystal. One conse-
quence of beam finiteness is contained in Eq. (21), in
which it is apparent that the effective field in the illumi-
nated area changes with the dimensions of this area. In-
tuitively this is quite obvious, in that a change in the size
of the illuminated area modifies the overall resistivity of
the crystal and therefore the value of the current density,
thereby changing the effective field induced by an exter-

Fig. 2. Measured values of first harmonic Bragg diffraction ef-
ficiency for an expected m1 5 0.3 with He–Ne, as a function of
external bias voltage. The fit is obtained by taking of the first
harmonic of Eq. (20) and use of relation (28). (b) Measured val-
ues of second harmonic Bragg diffraction efficiency. The fit is
obtained by taking of the second harmonic of Eq. (20).
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nally applied voltage. In Fig. 4 we report the results of
the TWM-coupling-enhancement factor s 5 g2/
(V/lEDb)

2 (for m1 > 0.2) for various values of lb /l. On
this plot is also superimposed the theoretical fit of Eqs.
(20) and (21), in the same first-harmonic TWM approxi-
mation used in the previous paragraph. The quenching
of the effective field in the illuminated area is qualita-
tively evident. To fit the results we must take Q0

Fig. 3. (a) Measured values of TWM gain ratio of the amplified
beam for m1 5 0.84. Superimposed is the fitting curve obtained
by taking of the first harmonic of Eq. (20) and use of Eq. (29).
(b) TWM gain ratio for m1 5 0.92.

Fig. 4. Measured values of s 5 g2/(V/lEDb)
2 for various values

of lb /l. The fitting curve is obtained for m1 > 0.2 and Q0
> 1.7. Beam coupling higher than first-harmonic is neglected.
> 1.7, although this value must be viewed as an effective
Q0 because beam fanning effects, primarily responsible
for the high value of Ib , generally depend on the size of
the illuminated crystal region.

4. CONCLUSIONS
In this paper we have developed a new approach to the
problem of the theoretical description of PR space-charge
field formation in a standard TWM configuration, by ex-
ploiting a formalism recently established for the descrip-
tion of spatial PR solitons. This allows us to clarify the
standard theory and to point out a new approximation
scheme involving a single well-defined smallness param-
eter. In the frame of our formalism we have investigated
the dependence of the electric field on the spatial exten-
sion of the interfering beams in the presence of an exter-
nal voltage and have predicted TWM coupling enhance-
ment in the high-modulation-depth regime.

To test these two last predictions, we have performed
an experiment in a standard TWM configuration in
BaTiO3. The experimental results are in good agree-
ment with the theory, even in regions in which the condi-
tions for the validity of our approximation scheme are
marginally fulfilled, a circumstance that encourages us to
look for an improvement in the theory by relaxing some of
our more restrictive approximations.

APPENDIX A
To prove that conditions (17) and (18) imply condition
(16), we begin by maximizing uY (0)8u by use of Eq. (12) for
Q,

Y ~0 !8 5 2
Q9

Q
1 S Q8

Q D 2

2 YdrS Q8

Q D , (A1)

and the triangular inequality,

Y ~0 !8 < UQ9

Q U 1 S Q8

Q D 2

1 uYdruUQ8

Q U. (A2)

Condition (A2) can be rewritten as

Y ~0 !8 <
m1x2

1 2 m1
1

m1
2x2

~1 2 m1!2 1 uYdru
m1x

1 2 m1
,

(A3)

where each term in condition (A3) is greater than the cor-
responding term in inequality (A2). If m1 , 1/2, then
m1 /(1 2 m1) , 1, so that, using condition (A3), we have
uY (0)8u ! 1 if x ! 1 and uYdrux ! 1, proving that one
should choose e 5 x.

If m1 . 1/2, then m1 /(1 2 m1) . 1, requiring m1x/
(1 2 m1) ! 1 and uYdru ! (1 2 m1)/(m1x) (making x

! 1 as well) we have uY (0)8u ! 1, proving that one should
choose e 5 m1x/(1 2 m1).

As far as condition (16b) is concerned, we proceed in a
similar fashion, obtaining
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uY ~0 !9u <
m1x3

~1 2 m1!
1

3m1
2x3

~1 2 m1!2 1 2S m1x

~1 2 m1!
D 3

1 uYdru
m1x2

~1 2 m1!
1 2uYdruS m1x

~1 2 m1!
D 2

.

(A4)

From expression (A4) it is clear that in the diffusion re-
gime, with g 5 0, conditions (17) and (18) automatically
imply condition (16b). In the drift regime the leading
terms on the right-hand side are the last two. Thus we
must prove that

uYdru
m1x2

~1 2 m1!
1 2uYdruS m1x

~1 2 m1! D
2

! U2Q8

Q
1

g
Q

1
g
Q

Y ~0 !8U. (A5)

In this regime, according to condition (16a), it is sufficient
to prove that

uYdru
m1x2

~1 2 m1!
1 2uYdruS m1x

~1 2 m1! D
2

! uYdru, (A6)

which is implied, again, by conditions (17) and (18).

APPENDIX B
Condition (6) can be rewritten in dimensionless form as

2
kDb

EDb
V 5 E

2lkDb/2

lkDb/2

Ydj. (B1)

Only the symmetrical components of Y contribute to the
integral, so that it becomes, for Eqs. (15), (19) and (20),

2
kDb

EDb
V 5 E

2lkDb/2

lkDb/2 g
Q

dj

5 E
2lkDb/2

lkDb/2 g
~1 1 Q0!@1 1 m1 cos~xj!#

dj.

(B2)

We now approximate the function Q0 , which contains a
slowly varying beam profile factor, with an appropriate
constant value in a region of size lb (the approximate size
of the beam) and zero elsewhere. The integral becomes

E
2lkDb/2

lkDb/2 g
~1 1 Q0!@1 1 m1 cos~xj!#

dj

5 ~l 2 lb!gkDb

1
g

~1 1 Q0! E2lkDb/2

lkDb/2 1
@1 1 m1 cos~xj!#

dj. (B3)
The last integral can be approximated, for the typical case
of Klb @ 1, by

E
2lkDb/2

lkDb/2 1

@1 1 m1 cos~xj!#
dj >

lbkDb

~1 2 m1
2!1/2

. (B4)

Finally, substituting Eq. (B4) into Eq. (B3), in turn sub-
stituting Eq. (B3) into Eq. (B2), and solving for g, we ob-
tain Eq. (21).
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