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Generalizing soliton description using spatiotemporal wave variables, we identify and experimentally validate
the nonlinearity supporting quasi-steady-state solitons in biased photorefractive crystals for the one-
dimensional case, the transient counterpart of the explicit one-dimensional screening soliton theory. The ap-
proach leads to a non-Kerr-like spatially local exponential nonlinearity and explicitly provides soliton existence
conditions. These find quantitative agreement with a series of experiments in potassium lithium tantalate nio-
bate and reproduce previously described transient behavior. © 2006 Optical Society of America

OCIS codes: 190.5330, 190.5530.

1. INTRODUCTION

Photorefractive quasi-steady-state (QSS) solitons are ob-
served both as one-plus-one-dimensional (1+1D) slabs
and as 2+ 1D needles, in various crystal types and phases,
as bright and dark, single-component, and incoherent
solitons."™® They form the building block of soliton
electroactivation,14 an important expansion to the variety
of established soliton applications.'®® This is because, in
distinction to steady-state (SS) screening solitons,!’1?
QSS solitons do not require the homogeneous illumina-
tion of the entire crystal to form?® but allow the sequen-
tial imprinting of single-soliton waveguides in different
portions of the sample without erasing previously written
ones. This has spurred renewed interest in the effect,
whose study and phenomenological characterization have
developed in the past decade.'™ 13 One important still-
open issue is the identification of the effective optical non-
linearity that leads, during the transient, to the QSS
self-trapping.>>¢

Phenomenologically, a QSS soliton,?! in the basic 1
+1D case, is characterized by the following properties
(similar statements transfer to the 2+ 1D case).

(I) For an initially homogeneous biased material, the
initially diffracting light beam undergoes a cycle during
which it first progressively self-focuses; after a transient
t., settles into a self-trapped wave; undergoes a deceler-
ated evolution for a temporal window ¢,, the soliton pla-
teau, during which the actual transverse beam intensity
full width at half-maximum (FWHM) Ax changes slightly,
but the balancing of self-focusing and diffraction along
the propagation axis z is approximately maintained; and,
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finally, for ¢>(t.+¢,), decays into a distorted and once
again diffracting beam, ending the cycle.

(IT) The cycle occurs for a range of different experimen-
tal conditions, i.e., of input beam launch Ax,; value of ap-
plied external field £\, which must be larger than the dif-
fusion and charge-displacement fields; and of beam peak
intensity I,,, which must be much larger than the natural
or artificial background illumination I.

(ITT) The minimum beam size, in normalized soliton
units, which approximates the beam size during the pla-
teau, has a characteristic value (see, for example, Ref. 8),
implying that the observed minimum beam size Ax;, is
intensity independent and decreases as E| increases, all
else left unaltered, a dependence that tends to weaken for
wide beams.

(IV) All the time scales, i.e., . and ¢,, are inversely pro-
portional to I, and if Axg=Ax, ¢,>>1,.

(V) In conditions in which both the QSS and the gener-
ally different (wider and less intense) SS soliton can form,
the full cycle precedes in time the formation of the SS soli-
ton (see, for example, Refs. 7-9).

(VI) The cycle occurs both for monochromatic and for
white light.

In this paper we develop, for what we believe to be the
first time, a theory for 1+1D QSS solitons, compatible
with these phenomenological statements. The finding
hinges on the formulation of a generalized soliton propa-
gation equation that makes use of a single spatiotemporal
wave variable. Our specific goal is to explicitly predict and
experimentally validate the underlying nonlinearity and
the resulting soliton-width-nonlinearity relationship [i.e.,
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property (III)], providing a means to predict soliton pa-
rameters in a fashion that emulates the screening nonlin-
earity for 1+1D SS solitons.

2. MOTIVATION

At present, the understanding of QSS phenomenology is
based on mutual phase modulation induced by a superpo-
sition of multiple two-wave-mixing processes.>%® This
leads to a spatially nonlocal nonlinearity. The theory is
time independent [in contrast to properties (I) and (IV)]
and does not provide a method to predict the behavior of
statement (III). Refining the picture through the intro-
duction of a soliton threshold®® leads to an overestimated
value of required E, (for example, see results in Refs. 2
and 4). More radically, the theory is based on wave mix-
ing, a coherence-driven effect that cannot be reconciled
with property (VI). More elaborate time-dependent ap-
proaches based on numerical simulation, although not
providing an explicit and controllable picture, have iden-
tified most of the phenomenological traits, this underlin-
ing that the effect must arise from the basic time-
dependent photorefractive model.” For example, an in-
depth investigation of the predicted and observed
phenomenology well summarized in Ref. 8 allowed the
formulation of statement (III), in particular, finding that
in normalized soliton units the soliton FWHM has a mini-
mum at approximately 3, but, as stated therein, no reason
for this important characteristic was found. The difficult
situation is well depicted by the failure of a direct analogy
with the screening model, in the limit of low I, implied by
statement (V).

3. MODEL AND SELF-CONSISTENT
APPROACH

Photorefractive self-action is mediated by the formation of
a light-driven spatially resolved electric field E that
changes beam evolution by electro-optically modifying the
local index of refraction n=n;+An(E). In the 1+1D band-
transport model, the x-directed field E(x,z,t) obeys the
cumulative equation J,Y+QY=1, or

Y=exp(—f er’)|:1+j dr exp(fT Qdf’)], (1)
0 0 0

for conditions in which displacement charge, diffusion,
and photovoltaic effects can be neglected, i.e., in the re-
gime of experiments [property (ID].2% In Eq. (1), 7=t/tg,
tq=€0€ YN,/ [qus(Ng—N,)I,] is the so-called dielectric re-
laxation time, vy is the charge recombination rate, N, is
the density of acceptor impurities, Ny, is that of donors, ¢
is the electron charge, u is the electron mobility, s is the
donor impurity photoionization efficiency, I, is the equiva-
lent background illumination, Y=E/E;,, and Q=(1
+I/1,),I being the beam intensity. Equation (1) involves a
spatially resolved time nonlocality or memory that at SS,
i.e., for 7> 1, leads to the screening soliton expression Y
=1/Q, or E=Ey/(1+1/1).

According to properties (I) for 7. <7<, the normalized
beam intensity @ becomes approximately time indepen-
dent and factors out of the integrals. Furthermore, be-
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cause of property (IV), even the more complicated contri-
bution to the integral associated with the memory of the
initial transient phase (where @ is inherently time depen-
dent) can be neglected. The result is that Eq. (1) can be
approximated by

Y =exp(- Q1) + 1/Q - (1/Q)exp(- @7) — Y = exp(- Q1),
2)

the second form being valid because of property (II)
(@>>1). This is true except for the very tails of the beam
shape, and for time scales involved 7such that 7<1n Q/@Q,
a condition whose validity is discussed below.

To formulate the basic nonlinear propagation equation,
we note that the slowly varying part of the optical field A
li.e., I(x,z,t)=|AJ%] obeys the parabolic wave equation

[0, + (i/2k)d.JA = — (ik/ny)AnA, 3)

where %k is the wave vector of the monochromatic light
beam and An is the nonlinear index modulation, the re-
sult of the electro-optic response to the electric field de-
scribed by expression (2). The electro-optic response de-
pends both on crystal parameters and beam geometry and
on the actual phase of the sample. For ferroelectrics, such
as strontium barium niobate and potassium niobate, An
=—(1/ 2)n2reffE, rof being the effective linear electro-optic
coefficient. Defining Any=-(1/ 2)n2reffE0, expression (2)
implies that An=AnyY=Anyexp(-Q7). For paraelectrics,
such as room-temperature potassium lithium tantalate
niobate (KLTN), the electro-optic response is quadratic in
the electric field, An=-(1/2)nig gee’E?, where g
is the effective quadratic electro-optic effect, and expres-
sion (2) implies An=Any(Y)?=Angexp(-2Q7), where
Ang=—(1/2)nig.weze’E2. For both cases the single form

An = Angexp(- m@7) (4)

holds, with m =1(2) for ferroelectrics (paraelectrics). Note
that, in these terms, time enters into Eq. (3) through Eq.
(4) and acts as a parameter (for example, see Ref. 22). Fi-
nally, to self-consistently reduce our analysis to cases
leading to solitons, we impose a z-invariant intensity con-
dition by taking A(x,z)=u(x)exp(il'z)(I,)V2, T being the
soliton propagation constant. With this condition, insert-
ing Eq. (4) into Eq. (3), we obtain the nonlinear equation

[Tu + (1/2k)du] = — (k/ny)Ang exp(- mu?nu, (5)

where once again the property (II) has been used to ap-
proximate @=1/I,. To further cast the equation into a
form suitable to the identification of the soliton wave-
forms and their existence conditions, we generalize previ-
ous self-consistent approaches by changing the wave vari-
able from u(x) to w(&)=(mnY2G(¢), where £=x/d is the
transverse coordinate normalized to the nonlinear length
d=(-2kb)"V2 and b=(k/n;)An,. The result is

d*w(§/d& = - [y - exp(- w?)w (), (6)

where y=I"n,/(Anyk) is the normalized propagation con-
stant. Since no first-derivative terms appear, we can ex-
plicitly relate y to experimentally relevant parameters.
Equation (6) can be integrated once through quadrature,
leading to the algebraic relationship
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p*-pi=- yw®+ ywi - exp(- w?) + exp(-wy),  (7)
where p=dw/d{, po=(dw/désy, wo=w(é{=0)=u(é
=0)(mDY2=uy(m7)Y2. To predict bright solitons, we must
require that (diz/d¢).(=0, i.e., pp=0, and that #(£§)—0
and dz/dé—0 for é—o, which implies that w(¢)—0 and
dw/dé— 0 for £&— o for any finite value of 7 (and even for
7—o for a polynomial or exponential tail shape). This
leads to y=[1—exp(—w(2))]w52 and the soliton profile equa-
tion

d*w (/A& = —{[1 - exp(- wp) Jwy” - exp(- w?)}w(8),
(8

characterized by a spatially local?® exponential nonlinear-
ity, in distinction to other known soliton families. The
same procedure can be extended to dark self-trapping
conditions. %% The procedure leads to the set of soliton
existence conditions that form a generalized existence
curve in the wave peak amplitude wqo=u(é=0)(mnY?
=ug(mnY? and the A¢ (i.e., the normalized soliton inten-
sity FWHM Aé=Ax/d) parameter plane, as shown in Fig.
1. Equation (3) with Eq. (4) is a generalized nonlinear
Schrodinger equation, and the stability of the solitons of
Eq. (8) can be established through an approximate but ex-
plicit evaluation of the soliton power P as a function of the
propagation constant I' and subsequent application of the
Vakhitov—Kolokolov criterion (i.e., 3P/Jl'>0).%* Since only
the waveforms that have an approximately constant
width are of interest here, although the actual profiles are
not explicitly available, the assumption wag is approxi-
mately valid, and, with y=Tn,/(Angk)=[1-exp(-w3)]wy?,
the condition for the inverse function dI'/dP>0 is satis-
fied for all values of P (P>0 and Any<0).
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Fig. 1. (a) Existence curve for bright solitons of Eq. (8); (b), (c)
index patterns and (d), (e) soliton profiles for the two points A
and B, respectively, before and after the onset of strong satura-
tion, highlighting the reshaping of the beam tails [(d) and (e)].
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4. SOLITON EXISTENCE CONDITIONS

The results described in Fig. 1 [and Eq. (8) itself] confer a
picture now analogous to other soliton-supporting mecha-
nisms (see, for example, Refs. 17-19). However, whereas
Eq. (8) describes the entire family of solitons for any value
of wy, its relevance to QSS photorefractive solitons is self-
consistently limited to those conditions [a product of (I)—
(VI)] that allow the passage from Eq. (1) to expression (2).
In particular, the waveform u must be approximately in-
dependent of time, which means that the parameters of
interest must be those for which the beam shape changes
little as wy (i.e., 7) increases. This occurs in proximity to
the reshaping region identified by the minimum at w
[see Fig. 1(a)] corresponding to the onset of strong satu-
ration in the nonlinearity [see the comparison of condition
A to condition B, w( being intermediate, in Figs.
1(b)-1(e)], which also indicates a maximum value of non-
linear self-action. This means that, during the cycle of
statement (I), we expect the minimum value of Ax,;, to
correspond to the minimum value Aé,;,=A&w)). This al-
lows the direct prediction of Ax,;, as a function of Ey, i.e.,
of property (ITII). From Eq. (8) this existence relationship
is

N e
EJ™7, 9)

where from Fig. 1(a), Aépin=3.07, a;=(rm?, and ay

=€y (Gop) 2. The condition at the basis of the approxi-
mate expression of relation (2) can now be more precisely
quantified. It implies that for the cycle of property (I) the
role of the screening term 1/@ is negligible for the
diffraction—self-focusing interplay [a situation that fits
well with property (V)]. This translates to Ax,>> Ax;,, Ax,
being the screening soliton size for the given E, and
u0.17_19 Through soliton asymp‘co‘cics25 and Eq. (9), this
translates into the general (i.e., dimensionless) condition
U > [Aéin/ (w/2)2=4 for m=1,2.

The m=1 prediction is illustrated in Fig. 2(a) and com-
pared with the prediction of the nonlocal wave-mixing
theory.®® For the 1+1D case, lack of published results
precludes a quantitative comparison with experiments.
As a matter of illustration, the single 1+1D point de-
scribed in Ref. 4 is compared with the prediction, but this
can constitute proof of agreement to theory only through
further experiment. More importantly, the prediction pro-
vides the explicit value of the minimum normalized soli-
ton width A&, ;,=3.07, a value that fully explains previ-
ous predictions of statement (111).39 Furthermore, the
result of Eq. (9) is able to describe the qualitative part of
proposition (III), by which for large values of Ax,;,, self-
trapping will occur for similar values of E\,. From Fig.
2(a), for example, this is particularly evident for E,
~0.1kV/cm and Ax;,~30 um. A specular insensitivity
in external bias could be observed for highly confined
beams. Finally, again for illustrative purposes, we have
also plotted the 2+ 1D data that are available, but here a
comparison requires the elaboration of a 2+ 1D theory.

5. EXPERIMENTS

We carried out a series of experiments in a 3% mm
X 2.6 mm X 6% mm sample of photorefractive KLTN.
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Fig. 2. (a) Predicted self-trapping existence conditions (solid
curve) from Eq. (9) for noncentrosymmetric samples (m=1) for
the parameters of Ref. 4. Dashed lines indicate the region of ex-
istence predicted by the nonlocal theory of Ref. 3, and the hyper-
bolic form of Eq. (9) well reproduces the observed insensitivity of
Ax,;i, on E for large beams (see text). For illustrative purposes,
the single 1+1D data point described in Ref. 4 is also plotted
(filled squares), along with data for 2+ 1D solitons (open squares)
from Ref. 2 (minimum in the x direction). (b) Self-trapping exis-
tence conditions for centrosymmetric samples (m =2): experimen-
tal results (squares) compared with theory (solid curve).

The crystal is heated through a current-controlled Peltier
junction above its ferroelectric phase transition at 7T,
=15°C to T'=21°C. Here the crystal is paraelectric and
manifests a quadratic electro-optic effect, so the transient
self-trapping occurs in the m =2 case. The measured crys-
tal parameters are n,=2.35, g.r=0.12m*C2, and &,
=8.4X10%. A cw argon-ion laser (\=514 nm) was used in
part to achieve the y-polarized (low) background illumina-
tion (Ip) and in part for the soliton beam, which was x po-
larized parallel to the direction of the external bias field.
An approximate 1D launch Gaussian beam with an input
Ax varying from 8 to 30 um (and the FWHM in the ver-
tical y direction fixed to Ay =8 mm) was achieved through
the use of different confocal lenses combined with a final
cylindrical lens with a 15 cm focal length and an output
iris. The intensity distribution at the input and output
facets of the sample was imaged onto a CCD camera,
which allowed for a continuous monitoring and data ac-
quisition of the beam profile, width, and peak intensity.?

To test the basic prediction of Eq. (9), for each given
value of input launch Ax,, we detected the output time dy-
namics of the intensity distribution, characterized by a
sequence of a focusing, quasi-stationary, and defocusing
stages. By varying the value of applied E, we observed a
change in the value of the minimum output Ax,;, during
the quasi-stationary stage. In Fig. 2(b) we report the val-
ues of applied E, required to have Ax,;,=Ax,, i.e., the
formation of a QSS soliton. The soliton beam power was
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P=60 uW at input, whereas the input intensity ratio was,
for each point, fixed to u%z(lp/ll,)z 160.

The agreement with predictions is evident, validating
Eq. (9) and, consequently, the self-consistent procedure
leading to Eq. (8). In turn, since results are based on mea-
surements of a minimum (FWHM), sensitivity is limited;
this is reflected in the errors in data.

We note that congruently with (IT), (ITI), and (IV) Eq.
(9) does not contain u, I, or I,,. More radically, Eq. (8),
which dictates the salient physical features of the self-
trappping process, is invariant for transformations of the
type 7,(t,I)— (ot,o 1), I being the intensity of the sole
soliton beam (this behavior is not true for screening
solitons'"19).

6. CONCLUSION

Concluding, we have elaborated a direct self-consistent
description of QSS photorefractive solitons, providing the
means to relate experimental parameters to observed
self-trapping, for both linear and quadratic electro-optic
responses. The finding should provide both the basis for
the prediction and the description of the actual soliton dy-
namics in time (for example, the duration of the soliton
plateau); its extension to two-dimensional self-trapping,
where, however, anisotropy is expected to play a relevant
role; and the formulation of a more general physical pic-
ture in which space and time lead to new effects based on
their mutual interplay.
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