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We predict self-focusing and self-trapping of optical beams propagating in unbiased centrosymmetric
photorefractive crystals in the near-transition paraelectric phase, where the nonlinear response is proportional
to the square of the diffusion space-charge field. [0 1998 Optical Society of America
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In the past few years, nonlinear optical propagation in
photorefractive (PR) crystals has been the object of an
extensive research effort, which has eventually demon-
strated the possibility of achieving self-focusing and
self-trapping of optical beams.! In particular, spatial
solitons can be supported by PR crystals that exhibit
a linear electro-optic effect and result from a nonuni-
form screening of an external bias electric field. In
this process the inherently asymmetric internal space-
charge diffusion field' E,, = — (KT /e)V[In(I + I)/1,],
where [ is the optical intensity and I; is the dark irra-
diance of the crystal, plays a negligible role. Actually,
it can be shown analytically? that, in the absence of
external bias, the diffusion field alone can support
in such crystals one-dimensional nondiffracting planar
beams (which undergo unavoidable self-bending during
propagation).

Most recently, self-confinement in biased centrosym-
metric PR crystals that exhibit a quadratic (but not
linear) electro-optic effect was considered both theo-
retically’ and experimentally.* In this case, because
the nonlinear refractive-index contribution for unbi-
ased centrosymmetric crystals is proportional to the
square of Eg, its asymmetry is no longer relevant, and
it is natural to look for the existence of self-confined
propagating beams with no self-bending. In this Let-
ter we study the general propagation equation in un-
biased centrosymmetric PR crystals and demonstrate
the existence of such solutions in the form of both self-
confined and self-focused beams.

In centrosymmetric media the photoinduced change
of refractive index is given by® An = —(1/2)n3geo?(e, —
1)2E..2, where n is the unperturbed refractive index
of the crystal, g is an effective quadratic electro-
optic coefficient, and &, is the low-frequency dielectric
constant. This expression can be now inserted into the
parabolic wave equation®
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which describes the evolution of the slowly varying
amplitude A of the propagating optical field E,p =
A(x, 2)exp(ikz — iwt) + c.c., where & = nw/c. Pro-
ceeding in this way, and confining our attention to the
one- plus one-dimensional (1 + 1D) case, we obtain
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where ( = kz, £ = JV2kx, and y = —n?k2geo?(s, —
1)2(KgT/e)?>. This model equation applies if we ne-
glect the dark irradiance I; with respect to the inten-
sity I = |A|?, a condition that obviously requires the
peak intensity Iy to be much larger than I;. We note
that, because of the structure of Eq. (2), we can al-
ways account for the influence of the loss term ia A,
which has been omitted, by multiplying its solutions
by exp(—a/{). Moreover, if A(¢, () is a solution, then
aAl p(¢ — &), p2(¢ — )] solves Eq. (2) for arbitrary
real p, £o, and {p and complex a. This property, which
is valid as far as the relative scaling between longitudi-
nal and transverse coordinates is concerned and also if
I; is not neglected, implies that localized solutions that
correspond to self-guided propagation (when they ex-
ist; see below) cannot possibly obey a peak amplitude—
width relation (the so-called existence curve) as in the
case of Kerr-type or ordinary photorefractive solitons.

To solve Eq. (2) it is expedient to introduce the new
independent variable B through the transformation
A = B#*, where u = 1/(1 + 4y). Different types of
solution of Eq. (2) can then be associated with the sign
of the parameter u. Let us first consider the case
u>0,ie.,y > —1/4. A particular solution of Eq. (2)
reads as

A=0, (2)
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where Ay and & are arbitrary parameters fixed by
the ¢ = 0 boundary beam profile, H, are Hermite
polynomials, and
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In the limiting case u — o, that is, for y = —1/4, for all
even values of n there is no diffraction because these
solutions all take the same Gaussian expression:

A(¢, §) = Ao exp[—2i(1 + 2n){/67]

X exp[—(1 + 2n)&?/62]. (5)

From an experimental point of view, the most rele-
vant solution of the kind given in Eq. (3) corresponds
ton = 0 (i.e., Hy = 1); in fact, in this case the bound-
ary condition has a Gaussian form and can easily be
imposed. Referring to this situation, it is important to
note that u larger than unity (i.e., —1/4 < y < 0) gives
rise to nonlinear self-focusing, whereas u smaller than
unity (i.e., v > 0) leads to defocusing with respect to
linear diffraction corresponding to w = 1 (y = 0). For
the special value y = —1/4 the solution has the expres-
sion given by Eq. (5) with n = 0.

For comparison, we note that solutions analogous to
those found in Ref. 2 for noncentrosymmetric crystals
exist also in our case and read as
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where Ai(x) is the Airy function and 7 is a free
parameter that is related to its main width.

Let us now consider the case u < 0 (i.e., y < —1/4).
In this case, particular solutions in the form of solitary
waves are
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where y is a constant that depends on the phase
modulation at the boundary ¢ = 0 and is responsible
for the beam’s transverse displacement at a constant
rate 2y, and B relates to signal width. A class of
solutions can also be obtained from Eq. (3) through
the substitution u — —u. However, because of the
negative value of u, the Hermite polynomials in Eq. (3)
now appear in the denominator and, therefore, their
zeros are singularities in the variable ¢ of our solution.
This result implies that the only physically acceptable
solutions obtain for even-degree polynomials, i.e., for
n = 2m. For instance, the solution associated with
H, 0 is
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This solution corresponds to a self-focusing process
leading to catastrophic collapse unless the propagation
distance is limited to values such that ¢ < 82\/[ u|/4.

We remind the reader that the possibility of explicitly
finding the above analytical solutions is based on
neglecting the dark irradiance I; (as, for example, was
done in Ref. 2). If I; is not neglected, it is possible to
show that, strictly speaking, no localized solitary wave
solutions exist. However, for the large values of Iy/1,
typically present in most experimental situations, our
solutions are by all practical means indistinguishable
from the ones that pertain to the exact model over the
transverse width of the crystal and for typical crystal
lengths.

Let us now discuss the possibility of experimentally
observing the nonlinear propagation effects predicted
by the above analytical results. In a standard ex-
perimental configuration, a polarized argon-ion laser
beam operating at, for example, A = w/c = 515 nm
is focused by a cylindrical lens onto the input face of
a zero-cut sample so as to propagate parallel to it.
The beam is polarized in a plane orthogonal to the
lens axis (along the confined direction). To evalu-
ate the feasibility of observing self-focusing and
eventually self-trapping we have to evaluate the
order of magnitude of An [see Eq. (1)], which has to
be large enough to provide beam guidance. In our
case the nonlinear index modulation is determined,
for a given crystal temperature 7', only by the size
(and eventually the shape) of the input beam. No
external parameters, such as intensity ratio (as long
as Iy >> I;) and external voltage, are present. In
particular, the index modulation, for a fixed T', is given
by An = |yln/(2k?)[d(n I)/dx]* = |yIn/(2k%)4x?/w*,
where we have assumed that I = Iy exp(—x%/w?) [see
Eq. (5)]. The index change between x = 0 and x = 2w
thus gives rise to an effective An = 16|y|n/2k%w?.
For the special value |y| = 1/4 we have, for w = 6 um
(corresponding to a 10-um intensity full width at
half-maximum), An = 1.6 X 1074, which is in the
range of values able to provide linear waveguiding.
We stress the fact that no existence curve is present;
rather, the crystal parameters have to be such as
to produce the appropriate values of y. Consid-
ering typical parameter values, such as n = 24,
g = 015m*C2 and (KzT/e) = 26 mV at room
temperature, we need high values of &, to reach
the necessary order of magnitude. Such values are
attainable only in paraelectric materials close to the
ferroelectric phase transition. For example, samples
of strontium barium niobate® can have values of ¢, =
2 X 104-8 X 10* for T' = 125-140 °C, and we expect
to be able to observe significant diffusion-driven non-
linear diffraction compensation (the effective An
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ranges in this case from 1.8 X 1075 to 2.7 X 107%).
Other crystals with high ¢, are paraelectric potassium
lithium tantalate (KTN)® and paraelectric potassium
lithium tantalate niobate (KLTN).”

Returning to Eq. (2), we find that the predicted
nonlinear behavior depends on the light-input con-
ditions and the value of the parameter u. For the
above-mentioned configuration the input beam is an
unchirped focused one-dimensional Gaussian beam.
For the case of paraelectric strontium barium niobate,
v takes values of approximately —0.03 to —0.5, so posi-
tive values of u larger than approximately 1.1 and
negative values less than —1 are possible. This means
that, in principle, self-focusing described by Eq. (3)
(with n = 0), Gaussian solitons described by Eq. (5)
(again with n = 0), and hyperbolic solitons described
by Eq. (7) (with y = 0) can be observed.

As far as paraelectric KLTN is concerned, recent
results for spatial screening solitons* were obtained for
crystals characterized by a room-temperature phase
transition that, however, possesses low peak values of
er (e, = 38 X 10%). This implies that we can explore
values for at most u = 1-1.2 and that, therefore, we
can expect only slight self-focusing effects described by
Eq. (3). In this respect, we note that KLTN crystals
with higher peak values of &, have been grown’ but
with critical behavior well below room temperature.
The lower peak value of ¢, at the phase transition has
been attributed to a less homogeneous distribution of
dopant and impurity concentrations. Thus it should
be anticipated that for localized areas of particular

samples the actual value of ¢, will be much higher than
the average bulk measured value; therefore, for well-
localized beams in short crystals, higher values of u
should be attainable.

Finally, we note that the analytical solutions can
also be found easily in the (1 + 2D) case, as long as
the nonlinear propagation can be described by a scalar
parabolic equation, which implies some restrictions on
the polarization state of the input beam and on the
values of the components of the crystal electro-optic
tensor.

Useful discussions with M. Segev are gratefully
acknowledged.
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