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Abstract.We describe the basic physical mechanisms supporting the forma-
tion of spatial solitons in photorefractive crystals, and provide an up-to-date
account of the developments in the field.

1 Introduction

Diversity and complexity, on one side, and extreme regularity and stability,
on the other, are two faces of nonlinearity. Solitons are a paradigm of the sec-
ond, deriving their scientific and technological importance from a remarkable
universality and a specific amenability to application. The phenomenologi-
cal trait of a soliton is a nonlinear wave that propagates without suffering
distortion to the point that, when made to interact with other waves, it main-
tains its localized identity in a manner analogous to a particle. This striking
stability and robustness is a consequence of the action of two counterbalanc-
ing effects: linear dispersion and nonlinear self-phase modulation, a dynamic
feedback loop that locks the wave into a soliton.
Although soliton science dates more than a century back, the accessi-

ble generation and observation of solitons in Optics has in the past decade
caused a revival of interest. A tassel in this revival is without doubt played by
photorefractive spatial solitons, which are micron-size beams that propagate
even tens of millimeters without diffracting. Discovered in 1992, they have
become arguably the principal playground for soliton studies, pairing relative
ease in experiments with a rich diversity of underlying physical mechanisms.
In this Chapter we describe how photorefraction can support optical spa-

tial solitons, review some of the principal phenomenology, recall the main
implications they have had on soliton science, and discuss some potential ap-
plications. Previous reviews can found in [1, 2, 3, 4, 5], whereas an up-to-date
account can be found in [6].

2 Self-trapping in photorefractives

One of the principal characteristics of photorefraction is that optical self-
action can build up in time, accumulating into a strong nonlinearity even
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for low power continuous-wave laser beams [7, 8]. In 1992, M. Segev, B.
Crosignani, and A. Yariv, proposed the first scheme to use photorefraction
to self-focus and ultimately self-trap a low power beam into a soliton [9].
The clue to their discovery was in how they were able to transform conven-
tional photorefractive nonlinearity from a wave-mixing process to a mutual
phase-modulation process. Photorefraction mediates self-action through the
redistribution of photoexcited charge, which, forming a light-induced space-
charge field, modulates the material index of refraction through electro-optic
effects. In the absence of an external bias field, photorefraction is driven by
diffusion of charge carriers. This leads to a light-induced change in the in-
dex of refraction that scatters light from the original beam into new optical
modes in different directions, leading to a process known as beam fanning.
Segev et al. suggested that, when the diffusion space-charge field could be
neglected with respect to the external bias field, strong self-focusing occurs
and self-trapping becomes possible [9, 10].
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Fig. 1. Basic experimental scheme allowing the observation of 1+1D or 2+1D pho-
torefractive solitons. For the 1+1D case, the laser beam is focused by a cylindrical
lens onto the input face of the photorefractive crystal (PRχ). The beam is propa-
gating in the crystal, exiting at the output face, and is imaged by a second lens onto
a CCD camera. For the 2+1D case, the beam is focused by a standard spherical
lens. The beam forms a soliton for an appropriate applied V and during a specific
time window.

The first experiments, reported in [11] were carried out with the set-up
shown in Fig.(1). The beam was launched in a zero-cut uniaxial photore-
fractive sample of rhodium-doped SBN (strontium-barium-niobate) along
the ordinary axis a, with the external biasing field E0 applied along the
poling optical axis c, through two electrodes brought to a relative poten-
tial V . A characteristic electro-optic change in index of refraction |∆n| '
(1/2)n3r33E0 ∼ 2− 5 · 10−4 could be reached for fields of the order of E0 ∼
1-3kV/cm (r33 ' 220pm/V ), a nonlinearity sufficient to produce the self-
lensing to compensate the diffraction of a 10 µm wide beam in the visible
wavelength range.
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The basic result of first experiments was the self-trapping of visible
continuous-wave beams into spatial solitons. A 15 µm wide continuous-wave
457nm µW beam was observed to propagate without spreading for external
fields in the range of 400-500 V/cm. The effect was found to persist even un-
der the influence of considerable noise and in conditions in which the launch
was not of the shape thought to be optimal for soliton formation [12]. Within
a short time a series of experiments confirmed this finding and provided the
phenomenological basis for the field [12, 13, 14].
Although the results confirmed the basic qualitative predictions, they re-

flected a far richer and more complex phenomenology. Two principal and
interesting features were observed. First, the self-trapping was transient, oc-
curring during a specific temporal window. This has caused the self-trapping
phenomenon to be termed a quasi-steady-state soliton. The second fea-
ture observed was that self-trapping could be obtained in both one and
two transverse directions, suggesting the existence not only of 1+1D (one-
transverse-plus-one-propagation-dimension) photorefractive solitons (envis-
aged by the first models) (see Fig.(4)), but also of 2+1D (two-transverse-
plus-one-propagation-dimension) solitons (see Fig.(2)).
In a second set of experiments, it was found that illuminating the pho-

torefractive sample with a second plane-wave background beam, effectively
increasing the dark conductivity in the sample (see Fig.(3)), a particular set of
experimental parameters transformed the transient (quasi-steady-state) na-
ture of the solitons into stable steady-state effects [15, 16, 17, 18, 19]. These
steady-state photorefractive solitons, which are termed screening solitons
and form the most commonly studied photorefractive self-trapped beams,
have since been observed in SBN, BSO, BGO, BTO, BaTiO3, LiNbO3, InP,
CdZnTe, KLTN, KNbO3, polymers and organic glass.

3 Nonlinear mechanism

3.1 Photorefraction

Photorefraction is observed in specific doped electro-optic crystals. In the
most common case, impurities form deep donor sites and, in a lesser con-
centration, acceptor sites. At visible wavelengths the crystal is transparent
but the donor site can be photoionized. Hence illuminated regions generate
an out-of-equilibrium concentration of mobile electrons that rearranges into
a space-charge distribution by diffusing to less illuminated regions and by
drifting in an externally applied electric field. The charge distribution settles
into the donor sites that, at equilibrium, are ionized by nearby acceptor sites,
thus rendering the dislocation semi-permanent. Yet the space-charge creates
a field, the space-charge field, that changes (locally) the index of refraction
through the electro-optic effect. This causes the light beam (that originally
generated the charge) to experience changes in its waveform, which again
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Fig. 2. Experimental two-dimensional soliton phenomenology compared to diffrac-
tion.

250 mm
z

x

100mm

x

y

Top View

Input Output

Input

Output

S
o
li

to
n

D
if

fr
a

c
ti

o
n

Top View

Fig. 3. A scheme to generate screening solitons [20, 21, 22]. The extraordinarily-
polarized soliton-forming beam is co-propagating with an ordinarily-polarized beam
of uniform intensity.

changes the charge distribution and hence the space charge field. The pro-
cess eventually leads to the formation of a soliton when the light beam induces
such a refractive index change that acts as a waveguide, while guiding the
light beam itself in its own induced waveguide.
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Fig. 4. A one-dimensional soliton observed in biased KLTN. From left, input 9
µm FWHM intensity distribution, output 29 µm linear diffraction (no bias), and
output 9 µm self-trapped beam.

3.2 Light-induced space-charge field

To grasp how photorefraction can support solitons, the first step is to simplify
the system to a one-dimensional condition, in which the beam depends only
on one transverse direction x, i.e., the light intensity is I(x, z), z being the
propagation axis, and for conditions in which a time-independent steady-state
regime has been reached. The corresponding solitons, for which I is moreover
independent of z, are 1+1D solitons. In the conditions of interest, the optical
intensity distribution I is such that the resulting concentration of photo-
excited electrons N , the concentration of acceptor impurities Na, and the
concentration of donor impurities Nd follow the scaling N << Na << Nd. In
this case the x-directed space-charge field E is related to the optical intensity
I through the nonlinear differential equation [23]

E(Ib + I)
1

1 + ε
Naq

dE
dx

+
kBT

q

d

dx

(

(Ib + I)
1

1 + ε
Naq

dE
dx

)

= g, (1)

where ε is the sample dielectric constant, q is the electron charge, kB is the
Boltzmann constant, T is the temperature, and g is a constant related to the
boundary conditions, i.e., to the voltage V applied on the x-facets Lx apart.
Ib is the effective background illumination, the homogeneous optical intensity
that allows a finite crystal conductivity.
The structure of Eq.(1) even in the one-dimensional case is complicated.

Setting Y = E/E0, Q = (Ib + I)/Ib, and ξ = x/xq = x/[εE0/(Naq)], Eq.(1)
is

Y Q

1 + Y ′
+ a

[

Q′

1 + Y ′
− Q

(1 + Y ′)2
Y ′′
]

= G, (2)

with a = NakbT/εE2
0 and G = gE0/Ib. The prime stands for (d/dξ), or

equally

Y = −aQ
′

Q
+

G

Q
+

GY ′

Q
+ a

Y ′′

1 + Y ′
. (3)
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This form is rendered tractable by the fact that the greater part of spatial
soliton study involves the trapping of beams with an intensity Full-Width-
Half-Maximum (FWHM) ∆x ∼10µm. For most configurations, xq ∼ 0.1 µm,
and η = xq/∆x ∼0.01 represents a smallness parameter, and the evaluation
of the various terms indicates that

Y (0) =
G

Q
+ o(η), (4)

since a ∼2.5 , and G '-1 [19]. A first correction is obtained by iterating this
solution into Eq.(3), and the resulting expression for Y is

Y (1) =
G

Q
− a

Q′

Q
− Q′

Q

(

G

Q

)2

+ o(η2). (5)

The first dominant term is generally referred to as the screening term and is
the main agent leading to solitons. It is a local term, in the sense that the
field (and hence the index change) at a given location depends on the optical
intensity only at that (same) location. This ”locality feature” is manifested
in the fact that this leading term does not involve spatial derivatives or
integration, has the same symmetry of the optical intensity Q, and represents
a decrease in E with respect to E0 as a consequence of charge rearrangement
(G '-1). The second term, of first order in η, involves a spatial derivative
and can be identified with the diffusion field. The third, again of first order in
η, is the coupling of the diffusion field with the screening field, a component
sometimes referred to as deriving from charge-displacement [24]. Both these
two last terms are nonlocal, in that they involve a spatial derivative, and thus
provide an anti-symmetric contribution to the space charge field (Y ) for a
symmetric beam I(x) = I(−x). That is, these last two terms lead to a beam
self-action with symmetry opposite to that required to support solitons. Such
terms lead to beam self-bending, which for most configurations amounts to
a slight parabolic distortion of the preferentially z-oriented trajectory. The
subject has attracted interest over the years [14, 21, 24] and has helped build
an understanding into the limits of the local saturable nonlinearity model
[25].

3.3 Nonlinear index change

In order to identify the nonlinearity, we must now translate the space-charge
field E into an index modulation. Screening solitons are observed both in
the noncentrosymmetric ferroelectric phase (for example, room temperature
SBN) and in the centrosymmetric paraelectric phase (for example, room tem-
perature KLTN). The standard configuration for generating screening solitons
is such that a zero-cut crystal is positioned so that the x-axis is the direction
along which E0 is applied, parallel to the optical axis for ferroelectrics, the
soliton beam of intensity I is extraordinarily-polarized and is propagating
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along z, while Ib is obtained through a co-propagating ordinarily-polarized
plane-wave [20]. For a noncentrosymmetric photorefractive crystal, like SBN,
∆n = − 1

2n
3r33E, n being the unperturbed crystal index of refraction, and

rij the linear electro-optic tensor of the sample. Consistent with our iterative
scheme of Eq.(4), we obtain the nonlinearity [16]

∆n(I) = −1
2
n3r33

V

Lx

1

1 + I/Ib
= −∆n0

1

1 + I/Ib
, (6)

which constitutes a saturable nonlinearity. The nature of the self-action evi-
dently depends on the sign of ∆n0, and is self-focusing, when ∆n0 > 0 and
defocusing for ∆n0 < 0. The sign of ∆n0 is established by the orientation of
the external bias with respect to the crystalline axes, having established the
sign of r33 with respect to the chosen system of reference. For example, in
SBN applying E0 in the direction of the crystalline (ferroelectric) we observe
a self-focusing nonlinearity. It is possible to apply E0 in a direction opposite
to ferroelectric axis, thus effectively changing the sign of ∆n0, then E0 must
be smaller than the coercive field, otherwise it may render the ferroelectric
crystalline structure unstable and de-pole the crystal.
Analogously, for the centrosymmetric case of KLTN, the electro-optic

response is quadratic ∆n = −(1/2)n3geff (εr − 1)2ε20E2, where geff is the
effective quadratic electro-optic coefficient, and ε0 and εr are the vacuum
and relative dielectric constants, and the zero order in η solution is [26, 27]

∆n(I) = −∆n0
1

(1 + I/Ib)2
, (7)

where ∆n0 = (1/2)n
3geff (εr − 1)2ε20E2

0 . Here the nonlinearity is either fo-
cusing or defocusing, depending on the sign of geff and not evidently on the
orientation of the applied field E0.

3.4 The soliton-supporting nonlinear equation

Soliton formation is described by the nonlinear wave equation, represent-
ing the evolution of the beam in the light-induced index of refraction pat-
tern ∆n. Under scalar conditions (i.e. when no relevant polarization dynam-
ics intervene), and for beam sizes much larger than the wavelength of the
monochromatic beam, this evolution is described by the nonlinear monochro-
matic paraxial equation

[

∂

∂z
− i

2k

∂2

∂x2

]

A(x, z) = − ik

n
∆nA(x, z) (8)

where k = 2πn/λ is the wave-vector, A is the slowly varying optical field, i.e.
Eopt(x, z, t) = A(x, z)exp(ikz − iωt), ω = 2πc/nλ, and I = |A(x, z)|2.
Soliton solutions can now be identified through the self-consistency method.

The balancing of diffraction (second term on the left hand side of Eq.(8)) by
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the nonlinearity (the term on the right hand side) leads to a solution A that
has a stationary or non-evolving intensity distribution I, and hence must be
of the form A(x, z) = u(x)eiΓz

√
Ib. The transverse spatial scale is normalized

to the so-called nonlinear length scale d = (±2kb)−1/2, i.e., ξ = x/d. For pho-
torefractive solitons in noncentrosymmetric crystals where the electro-optic
response is linear in the field, i.e., ∆n = − 1

2n
3r33E, b = (1/2)kn

2r33(V/Lx)
and we obtain [16, 19]

d2u(ξ)

dξ2
= ±

(

Γ

b
− 1

1 + u(ξ)2

)

u(ξ). (9)

The plus sign is for b >0, the minus for b <0. The sign of b corresponds to
the sign of ∆n0, and, as mentioned above, implies a self-focusing, for b > 0,
or a self-defocusing, for b < 0, nonlinearity, having established that E de-
creases across the beam profile (see Eq.(6)). Both defocusing and focusing
nonlinearities support solitons. A self-focusing nonlinearity traps a conven-
tional bell-shaped beam into a bright soliton; a self-defocusing nonlinearity
gives rise to a dark soliton: a non-broadening dark notch generated by a π
phase jump upon an otherwise uniform amplitude wave.
A parallel formulation holds for paraelectrics, where Eq.(7) substitutes

Eq.(6) [26].

3.5 Soliton waveforms and existence curve

The basic screening nonlinearity expressed by Eq.(6) indicates that, what
plays a role in the attainment of self-trapping is the ratio I/Ib, but not
the actual value of the intensity. This important result is the basis for low
power solitons in photorefractives, the logical consequence of a cumulative
effect brought to steady-state. Yet not any bell-shaped beam will necessarily
self-trap. Equation (9) identifies the specific set of waveforms that can form
solitons, and the observation of self-trapping is conditioned to launching a
beam that reasonably approximates a given soliton waveform. Furthermore,
given the saturable nature of ∆n, the self-trapped waveforms of Eq.(9) not
only do not have an explicit form, such as those of standard Kerr solitons,
but more importantly, their shape changes for different values of saturation.
The experimentally accessible parameters are evidently not the actual beam
shape, but the nonlinear paramater b, the beam width, or Full-Width-at-
Half-Maximum ∆x, and the intensity, which, for bright solitons, is generally
parametrized through the intensity ratio u2

0 = I(0)/Ib, i.e., the beam peak
intensity at x = 0 normalized to the background intensity. Similarly for dark
solitons, the relevant parameter is u2

∞ = I(x → ∞)/Ib. The fundamental
role of Eq.(9) is in providing, for each value of nonlinear response b, the
values of u0 and ∆x (or ∆ξ) of the bright soliton solution, the set of these
points in the (u0,∆ξ) parameter space being termed the soliton existence
curve. Analogously, the dark soliton existence curve will be in the (u∞,∆ξ)
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plane. The experimental generation of, for example, a bright soliton will then
be achieved by launching a bell-shaped waveform, such as a Gaussian beam
from a laser, with a correct value of ∆x and u0, for the given b.
To construct the existence curve the first step is to reduce the number

of relevant parameters in Eq.(9) by noting that it can be integrated once,
giving the relationship Γ/b = log

(

1 + u2
0

)

/u2
0 for bright beams, and Γ/b =

1/
(

1 + u2
∞

)

for dark, where u∞ = u(∞) = −u(−∞). Thus, for example, for
bright solitons Eq.(9) is

d2u(ξ)

dξ2
=

(

log
(

1 + u2
0

)

u2
0

− 1

1 + u(ξ)2

)

u(ξ). (10)

Next, Eq.(10) is integrated once by quadrature, and then the resultant first-
order ordinary differential equation can be solved numerically [16, 19]. The
values of (u0,∆ξ) that correspond to the soliton waveforms are obtained by
solving a simple integral numerically, giving rise to the soliton existence curve.
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Fig. 5. Existence curves (dashed curve) for bright noncentrosymmetric (left) and
centrosymmetric (right) solitons compared to results, from [22, 28] . Full line is the
explicit asymptotic function describing the existence conditions from [28].

The usefulness of the notion of a soliton existence curve is evidently asso-
ciated with experiments. As solutions of Eq.(10), the different points in the
parameter space represent different levels of saturation and hence different
waveforms, and u0 and ∆ξ are not sufficient to characterize them. In ex-
periments, the launch beam is a focused Gaussian beam from a laser, and
for this family of beams, u0 and FWHM unambiguously identify the wave-
form. The point is that since the soliton solutions are stable and robust with
respect to perturbations, they attract the beam dynamics to the closest self-
trapped solution by reshaping the initial launch beam in the first segments
of propagation. In turn, this closest self-trapped solution will have, to a good
approximation, the very same u0 and ∆ξ of the launch.
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3.6 Experiments and theory

The basic test for the validity of the approximations leading to Eq.(9) is
in comparing the experimental conditions leading to solitons with those pre-
dicted through the existence curve. The best established method to carry out
this test is to keep the actual Gaussian launch beam unchanged, and scan,
for each fixed value of u0, the value of E0 that causes self-trapping. Since ∆x
is fixed, changing E0 changes ∆ξ through d.

Fig. 6. Comparison between experiments and theory for (1+1)D dark screening
solitons, from [29]

Experimental results compared to theory are shown in Fig.(5) for bright
solitons and in Fig.(6) for dark [19, 26, 27, 29]. Whereas qualitative agreement
is full, quantitative agreement in some experiments is weaker. The very small
discrepancy in these cases is generally attributed to partial guiding of the
background beam, for which also Ib depends on x, and in the evaluation
of the actual value of the electro-optic coefficients, which depend on poling,
clamping, and temperature.

4 Two-dimensional solitons

Photorefraction is able to support, both as quasi-steady-state, and as steady-
state effects, also 2+1D solitons (see Fig.(2)), i.e., beams whose intensity
I(x, y) is well-localized in both transverse directions x and y [11, 20, 21], in
the greater part of photorefractive materials, such as other ferroelectrics [30],
semiconductors [31], paraelectrics [32], sillenites [33], and for most types of
self-trapping: bright, photovoltaic [72], multimode [73, 34, 35], and incoherent
[36, 37]. Furthermore, even (2+1)D dark solitons were observed in photore-
fractives, in quasi-steady-state [38] and in steady-state [39] under a bias field,
as well as photovoltaic [40] and incoherent [41] dark ”vortex” solitons. An ex-
ample of a dark vortex screening soliton is shown in Fig.(7).
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Since the Kerr nonlinearity cannot lead to stable 2+1D bright solitons,
the effect, which appears similar to the formation of a self-induced optical
fiber inside the bulk of the sample, represents an important achievement for
optical soliton science, and the associated studies have contributed to the
very understanding of higher-than-one-dimensional nonlinear waves.
The generalized relationship between the light-induced electric field E and

the optical intensity of the beam I is

∇ ·
[

E(Ib + I)
1

1 + ε
Naq
∇ ·E +

kbT

q
∇
(

(Ib + I)
1

1 + ε
Naq
∇ ·E

)]

= 0, (11)

and the irrotational condition for the dc space-charge field

∇×E = 0, (12)

along with proper boundary conditions (the field at the electrodes). Although
this two-dimensional situation can in general create components of the field
E both in the x and in the y directions, in most conditions Ex À Ey (there
is an intrinsic asymmetry in the direction of the externally applied field E0

along x), and hence the generally tensorial electro-optic response reduces to
a scalar response ∆n = −(1/2)n3reffEx analogous to the 1+1D case for an
x-polarized beam. In this manner, the propagation equation is the scalar (i.e.,
the optical field remains uniformly x-polarized)

[

∂

∂z
− i

2k

(

∂2

∂x2
+

∂2

∂y2

)]

A(x, y, z) = − ik

n
∆nA(x, y, z) (13)

Finding E (and hence Ex) through Eq.(11) in itself involves a nontrivial
three-dimensional, anisotropic, and spatially nonlocal nonlinear problem [42,
43, 44, 45, 46].
The first basic feature characteristic of the 2+1D process is that the pho-

torefractive response does not follow the shape of the optical intensity (as for
the 1+1D case of Eq.(6)). The combination of the x-oriented external field E0

with the localized I(x, y) gives rise to a central guiding index pattern, that to
some extent recalls the 1+1D index pattern, and two lateral antiguiding lobes
in the x direction [47]. These emerge as a basic feature of the response even
at zero order in η. Using the very same normalization procedures described
for the 1+1D case, at zero order in η the nonlinear problem becomes

∇ · (Y Q) = 0 (14)

and the irrotational condition

∇× Y = 0. (15)

From these the lobular structure illustrated in the top right insert of Fig.(??)
emerges, generated through numerical calculation of a specific solution.
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The principal consequence of this index pattern that resembles the panda-
fiber index distribution of polarization maintaining optical fiber, is that the
nonlinearity is spatially-anisotropic, in the sense that the self-focusing is astig-
matic, in most cases more pronounced in the x-direction with respect to the
y, where the lobes are absent. The result is that the general response in con-
ditions of small η supports elliptic soliton profiles [42]. Many experiments,
among which the greater part of early discoveries, indicate that also circular
solitons can form, i.e., with an approximately circular symmetric propagation
invariant I [20, 21, 32]. The possibility of generating solitons with a round
mode is particularly important for optoelectronic applications, since the cir-
cular symmetry provides optimal overlap with standard optical fiber. Without
considering first corrections in η, circular symmetric 2+1D solitons cannot be
explained, since the lateral lobes render the self-focusing in the x-direction
stronger than in the y. In other words, in the absence of a finite contribution
to the nonlinearity of the nonlocal mechanisms such as charge diffusion and
displacement, round solitons are excluded by anisotropy. For relatively narrow
launch beams η becomes finite and the lobular structure suffers an asymmet-
ric distortion. In particular conditions, this distortion greatly decreases the
effect of one of the two lobes, both bending the soliton trajectory and de-
creasing the x directed self-focusing power. When astigmatism is sufficiently
decreased, round solitons emerge [48]. The apparently simple formation of
round solitons from round Gaussian launch beams is in fact the consequence
of a rather involved combination of anisotropy and response nonlocality.
The fact that 2+1D solitons are supported by this more complex nonlin-

earity does not substantially modify our soliton picture, other than the fact
that we do not have a means to formulate in a straightforward manner an
existence curve for (2+1)D solitons. Nevertheless, if we phenomenologically
build the set of points in which it is possible to observe circular-symmetric
self-trapping [21, 32], we find a single valued continuous curve that behaves
and looks just like the existence curve of (1+1)D solitons (albeit at somewhat
higher values of ∆ξ).

5 Temporal effects and quasi-steady-state dynamics

Although the cumulative nature of photorefraction is the basis for strong
nonlinear response, actual time dynamics play a negligible role in the physics
behind steady-state 1+1D and 2+1D solitons. Temporal effects becomes rel-
evant when we ask what happens to the beam during the transient from an
initially diffracting Gaussian beam to a steady-state soliton, what occurs if
the parameters, such as the external bias field E0 or the light intensity dis-
tribution, are modulated in time, or, simply, what is the physical origin of
quasi-steady-state or transient self-trapping.
The time dependent version of Eq.(2) truncated at zero order in η reads
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Fig. 7. A vortex screening soliton from [39]. (a) Input intensity distribution of the
vortex; (b) Diffracting vortex after linear propagation to the output of the sample;
(c) Self-trapped output intensity distribution in a biased sample. (bottom) Probe
beam guided propagation.
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Fig. 8. (Top) Numerical evaluation of nonlinear index response for a narrow [6.5
µm] beam (left) and a wide [14 µm] beam (right). In the first case first order
corrections in η play an important role, whereas in the second, these are negligible.
(Bottom) Zero field electro-optic read-out of the index pattern underlying a 6.5 µm
round soliton (left), and the read-out for a 14 µm soliton (elliptic) (right). Note
how for the smaller beam one of the lateral lobes is almost absent (from [48]).

∂Y

∂τ
+QY = G, (16)

where τ = t/τd, τd = ε0εrγNa/(qµs(Nd−Na)Ib) is the characteristic dielectric
time constant, γ is the recombination rate, µ the electron mobility, s the
donor impurity photoionization efficiency. As occurs for most configurations
of interest to soliton dynamics, the charge recombination time τr=1/(Naγ)
is much shorter than charge transport time, and no time dependence in the
boundary conditions are considered (G=-1). If Q is almost constant in space
and time, Eq.(16) gives an exponential build-up of Y with the time constant
τd/Q. For solitons, Q is both space and time dependent, the continuum of
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different time constants leading to a highly time-nonlocal response, as can be
appreciated by the formally equivalent integral version of Eq.(16)

Y = Ge
−
∫

τ

0

Qdτ ′

(

1 +

∫ τ

0

dτ ′e

∫

τ′

0

Qdτ ′′

)

, (17)

indicates [43].
The result is an evolution that presents a number of surprising phenomena.

5.1 The transition from a diffracting wave to a soliton

The full complexity of the nonlocality emerges when I undergoes relevant
changes in time, i.e., during the very first collapsing stage from a diffracting
to a self-trapped beam. This stage occurs for times τ ≤ τs = 1/(1 + u2

0)
and is characterized by a stretched exponential dynamic. For example, if we
consider the physically relevant time evolution of the output beam FWHM

∆xout(t), we find that ∆xout(t) = (∆xout(0)−∆xin)e
−(τ/τs)

β

+∆xin, where
∆xin is the input beam FWHM and β < 1 is the characteristic stretching
parameter [49]. Intuitively, since the final size of the beam depends on the
distributed self-focusing along the entire propagation axis z and each self-
focusing process has a different time constant for each z (owing to the initial
diffracting I), the stretching is a direct consequence of the superposition of
a continuum of different time scales.
The situation is even more complicated for 2+1D solitons. Here there are

generally two coupled dynamics ∆xout(t) and ∆yout(t), which lead also to an
evolution in time of beam ellipticity [50].

5.2 External modulation of soliton parameters

Although specific experiments have been dedicated to the study of self-
trapping with a time-dependent external bias E0 [79, 52, 53, 54], or the
spatial self-trapping of a single pulse [55, 56], the most widely studied case
is when the transverse beam intensity is randomly modulated by having the
beam pass through a rotating diffuser before being launched in the photore-
fractive sample. The effect gives rise to what are generally termed incoherent
solitons. Consider Q to be a stochastic process with a characteristic time scale
τr ¿ τs. Defining Q(τ) =

∫ τ+τr
τ

Qdτ ′, this will be a deterministic function of
τ , and the entire space-charge formation process is described by Eq.(17) with
Q substituted with Q. In particular, the steady state solution (for τ → ∞)
will simply be, in the tractable 1+1D case, Y = G/Q(∞), and hence follows
the case of a saturable nonlinearity.

5.3 Quasi-steady-state solitons

As described previously, in the absence of background illumination self-
trapping can occur during a time window, known as the soliton plateau,
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after which the beam once again diffracts through the sample. The numerical
solution of Eq.(17) coupled to the parabolic wave equation confirms experi-
mental findings. To understand the process and the underlying mechanisms,
a generalized spatio-temporal soliton self-consistent approach can be imple-
mented, the resulting soliton supporting equation involves an exponential
nonlinearity that allows the prediction of the size of the quasi-steady-state
soliton ∆x as a function of experimental conditions [57]. In particular,

∆x =
∆ξminλ

2πn2am
E
−m/2
0 , (18)

where ∆ξmin ' 3.07, a1 = (reff )
1/2 and a2 = ε0εr(geff )

1/2, and m =1(2)
for noncentrosymmetric (centrosymmetric) samples, and λ is the beam wave-
length.

5.4 Response change in beams that approximately do not evolve

in time

In very special cases in which the beam does not undergo time evolution,
we can considerably simplify the prediction for the build of the space-charge
field [58]. In this case Eq.(17) is simplified to give

Y = e−τQ(1 +
1

Q
(eτQ − 1)), (19)

This approach can be meaningful and useful for conditions in which the beam
initially suffers a negligible amount of diffraction [59, 60, 61, 62, 63].

6 Non-screening self-trapping mechanisms

In both the 1+1D and 2+1D self-trapping mechanisms described above, the
driving process is the displacement of photoexcited charge so as to screen
the externally applied field E0, the mechanism being generally termed the
screening nonlinearity. Further studies have uncovered other self-trapping
mechanisms through different photorefractive effects, the main developments
being summarized in Table 6.

Table 1. Principal non-screening self-trapping mechanisms.

Mechanism Solitons References

Photovoltaic 1+1D Dark, 2+1D Vortex [64, 65, 66, 40]
Diffusion-driven 1+1D and 2+1D Self-focusing [67, 68]
Resonance Enhancement 1+1D, 2+1D Bright [69, 31, 70]
Spontaneous 1+1D, 2+1D Self-trapping [71]
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7 Materials

Photorefractive solitons can be observed in a number of different materials,
these including most photorefractive crystals, polymers and organic gels. A
map of main experimental findings associated to the different materials is
contained in the Table 2.

Table 2. Principal experiments on materials supporting solitons.

Material Soliton mechanism References

SBN, KNbO3, BaTiO3, Polymers Screening [16, 30, 134, 135, 74]
LiNbO3, KNSBN Photovoltaic [65, 64, 66, 72]
KLTN, Organic Gels, Unpoled SBN Quadratic screening [27, 32, 75, 76]
KLTN (near transition) diffusion-driven, spontaneous [68, 71]
BGO, BSO, BTO Screening in optically-active media [15, 77, 33]
InP, CdZnTe Resonantly enhanced [31, 70]

8 Soliton interaction-collisions

A soliton is not simply a propagation invariant wave, but the result of the
balancing of diffraction by distributed nonlinear self-lensing. This ”dynamic”
equilibrium makes the phenomenon stable to perturbations and leads to
a characteristic particle-like soliton-soliton phenomenology. Photorefractive
crystals form an ideal setting for the observation and study of this multi-
beam property, for a number of reasons. First, photorefractives offers a very
strong nonlinearity at very low (microwatt) power levels. Second, launching
and detecting different beams propagating through a bulk environment is
relatively simple. Third, the saturable nature of the nonlinearity makes the
collisional phenomenology richer, including events such as soliton fission and
fusion. Last but not least, the possibility of experimenting with 2+1D solitons
makes previously inaccessible soliton-soliton interaction scenarios observable,
such as soliton spiraling and interactions between solitons carrying angular
momentum. In fact, the system is so amenable to soliton propagation, that
it can simultaneously support a 1+1D and a 2+1D soliton, allowing the sin-
gular study of collisions between solitons of different dimensionality. For all
of these reasons, almost all pioneering experiments of soliton interactions
in 2+1D settings were obtained first with photorefractive solitons, and only
later (many years later) were followed up by similar experiments in other
soliton-supporting saturable material systems.
The principal experiments on soliton interactions are summarized in Table

3. The * marks those cases where these experiments were the first in all soliton
studies, including those beyond optics.
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Table 3. Principal experimental results on photorefractive soliton collisions.

Phenomenon Year References

Incoherent collisions between 1+1D solitons and fusion * 1996 [78]
Incoherent collisions between 2+1D solitons and fusion 1996 [51]
Soliton annihilation and birth (fission) in coherent collisions * 1997-1998 [80, 81]
Coherent interaction between 1+1D and 2+1D solitons 1997-1998 [82, 83]
3D soliton spiraling * 1997 [84, 85]
Hybrid-dimensional collisions * 2000 [86]
Collisions between counter-propagating solitons * 1999-2004 [87, 88, 89]

9 Vector and composite solitons

Vector solitons are an important part of basic soliton phenomenology. Vector
solitons are self-trapped beams composed of more than one (independent)
optical field. In analogy to linear guiding terminology, a scalar (i.e., single
component) soliton occupies the lowest mode of its self-induced waveguide.
In turn, a vector soliton emerges when this waveguide is the result of the
joint action of two (or more) independent optical fields (e.g., when the fields
are not coherent with each other or when they are at two orthogonal polar-
izations), and all fields occupy the lowest mode. The vector soliton is said
to be composite or multi-mode when one or more of the independent fields
or components occupies higher modes. The components can be independent
because they have orthogonal polarizations (Manakov-like solitons), differ-
ent wavelengths, or simply are from mutually incoherent sources [90]. The
principal experimental results on photorefractive vector soliton studies are
summarized in Table 4. The * marks those cases where these experiments
were the first in all soliton studies, including those beyond optics.

Table 4. Principal experimental results on photorefractive vector solitons.

Phenomenon Year References

Manakov-like soliton 1996 [91, 92]
Bright-dark vector soliton 1996 [93]
Multi-mode multi-hump solitons * 1998 [94]
Dipole-type composite solitons * 2000 [73, 35]
Propeller soliton * 2001 [34]
Collisions of Manakov-like solitons * 1999-2001 [95, 96]
Collisions of multi-mode solitons * 1999 [97]
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10 Incoherent (random-phase) solitons

As briefly discussed previously, photorefraction is able to also trap beams
that have a randomly varying Q, since the cumulative nature of the non-
linear response can in specific conditions be exclusively driven by Q, which
for a static stochastic process is well defined and deterministic. This allows
the self-trapping of a spatially incoherent light beam, and even of a spatio-
temporally incoherent beam. The result, an ”incoherent soliton”, is due to
the simultaneous guiding of all the underlying independent light fields by a
nonlinear index pattern that is generated by the time-average of the intensity
resulting from the superposition of all the components. The phenomenon has
attracted a considerable amount of interest and opened up a field in its own
right. The principal achievements are summarized in Table 5. In this case,
all the pioneering experimental work was performed in photorefractives.

Table 5. Principal experimental and theoretical results on incoherent solitons.

Achievement Year References

Self-trapping of a partially incoherent beam 1996 [36]
White-light soliton 1997 [37]
Coherent-density and modal theory 1997 [98, 99]
Dark incoherent solitons 1998 [41, 100]
Mutual coherence theory 1998 [101]
Anti-dark incoherent states 2000 [102]
Elliptic incoherent solitons 2000-2004 [103, 104]
Interaction of incoherent solitons 1998-2000 [103, 105, 106]
Incoherent modulation instability 2000-2004 [107, 108]
Arresting transverse instabilities via incoherence 2000 [109, 110]
White-light soliton theory 2003 [111, 112]
Modulation instability of white light 2002-2005 [113]
Modulation instability of white incoherent light 2004 [114]

11 Applications

Photorefractive solitons are not only the instruments for a substantial ex-
pansion of our understanding of nonlinear physics, but also for their role in
developing new applicative designs, concepts, and devices. A soliton in itself
is a beam that propagates through a bulk medium in a guided fashion, i.e.,
without losing its spatial definition. In turn, since photorefraction is wave-
length dependent (long wavelengths are not able to photoactivate impurities)
but the electro-optic response is much lesser so, a photorefractive soliton can
guide passively infrared beams, these undergoing a purely linear propaga-
tion. In other words, in conditions in which the photorefractive charge does
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not redistribute, a photorefractive soliton imprints in the bulk a waveguide
for non-photorefractively active light. The purely nonlinear nature of soli-
ton interaction allows also an all-optical type of elaboration of light signals.
Finally, the photorefractive crystal is both electro-optic and generally has
strong electronic nonlinearity. The electro-optic response allows a fast, versa-
tile, and multi-functional optical manipulation technique based on solitons,
known as soliton electro-activation, whereas the nonlinear response for wave-
length mixing and conversion can be strongly enhanced when combined with
self-trapping. A brief list of principal experimental achievements is reported
in Table 6

Table 6. Principal results on applications of photorefractive solitons.

Achievement Year References

Guiding a beam through a transient soliton 1995 [115]
Guiding a beam through a steady-state soliton 1996 [116]
Soliton-based Y junction 1996 [117, 118, 119]
Solitons at telecommunication wavelengths 1997 [31, 70, 120]
Soliton-based directional coupler 1999 [121]
Second-harmonic generation in a soliton 1999-2004 [122, 123, 124]
Soliton electro-optic effects 2000 [125]
Image transmission through waveguides induced by incoherent solitons 2001 [126]
Permanent fixing of multiple soliton-based devices 2001 [127]
Soliton electro-activation 2002 [128]
Optical parametric oscillation in solitons 2002 [129]
Coupling of fibers to soliton waveguides 2004 [130]
Low voltage solitons through top electrodes 2004 [131]
Soliton waveguides in organic glass 2005 [132]
Soliton-based fiber-slab couplers 2005 [133]
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Fig. 9. 2+1D 7 µm photorefractive soliton at quasi-digital voltages generated
through a top-sided electrode geometry. Input intensity distribution (a); diffrac-
tion at output face (b); and self-trapped soliton for 40 V (c). Measured values of
required bias voltage to achieve self-trapping vs distance from the crystal edge is
plotted in (d). From [131]
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12 Concluding Remarks

The study of photorefractive solitons has, in the past decade, played a ma-
jor role in the development of the present understanding of optical solitons,
and has had an important impact on soliton science and nonlinear waves
in general, in a variety of systems beyond optics. The drive continues to
this day. The last few years (2002-2006) have witnessed another important
breakthrough obtained with solitons in photorefractives: the invention of the
optical induction method to make nonlinear photonic lattices [136, 137, 138],
which has become the main experimental scheme to explore spatial soliton
phenomena in periodic systems. The ability to induce 1D or 2D photonic
lattices of any structure, and to tune the polarity and strength of the non-
linearity, have led to the observation of a series of soliton phenomena, many
of which being the first observation in any system in nature. Examples in-
clude the observations of 2D lattice (”discrete”) solitons [138], spatial gap
solitons [137], vortex lattice solitons [139, 140], random-phase lattice solitons
[141], solitons in quasi-crystals [142], as well as closely related phenomena of
Brillouin-zone spectroscopy of photonic lattices [143], Zener tunneling in 2D
photonic lattices [144], dynamics of polarons in photonic lattices [145], and
much more. These are just a small sample group from the recent experiments
with solitons in periodic structures, and they were all observed by employ-
ing the photorefractive screening nonlinearity while taking advantage of its
inherent nonlinear anisotropy [136].
When coming to summarize this chapter, looking back and reviewing

the progress and the impact photorefractive solitons have had on soliton
science since their discovery in 1992, instead of sitting back and enjoy the
accumulating progress, we chose to look forward with the wish that the best
is yet to come.
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