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1 Introduction

Solitons are a universal phenomenon that appears in a wealth of systems in
nature. The past few decades have witnessed their identification and observa-
tion in the more diverse physical systems: in shallow and deep water waves,
charge density waves in plasma, sound waves in liquid helium, matter waves
in Bose-Einstein condensates, excitations on DNA chains, ”branes” at the
end of open strings in superstring theory, domain walls in supergravity, and
many more. Solitons can even appear for electromagnetic waves in vacuum,
where they are supported by QED nonlinearities. And, of course, in Optics:
here solitons truly manifest themselves in a large variety of settings (for a re-
view on optical solitons see Refs.[1, 2, 3, 4]). In all these diverse systems, that
vary in almost everything from size to dimensionality, from underlying forces
to physical mechanisms, propagation leads to a family of nonlinear waves -
solitons - that have the same, universal, features: they are all self-trapped
entities possessing particle-like behavior.

In this Chapter we outline the mechanisms through which photorefraction
can support optical spatial solitons (for a specific review, see pages 61-125
in [4]), give an account of the development of the main underlying ideas,
and describe the associated phenomenology. Since the discovery of photore-
fractive solitons in 1992 [5], they have become one of the most important
experimental means to study universal soliton features. The rich diversity of
photorefractive effects has allowed experimental investigations into a large
variety of soliton phenomena, many of which have here found their very
first observation, in any soliton-supporting system in nature. For example, it
was with photorefractive solitons that fascinating soliton interaction effects,
such as 3D soliton spiraling, fission and annihilation, were first demonstrated.
Likewise, random-phase (or incoherent) solitons were first observed in pho-
torefractives, and so multi-mode solitons, both in 1D and in 2D. And, very
recently, solitons in two-dimensional nonlinear photonic lattices were demon-
strated, once again, in photorefractives, using a real-time optically-induced
photonic lattice. Today, almost 12 years after their discovery, photorefrac-
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tive solitons have evolved into a major subject contributing to research at
the cutting edge of nonlinear science. The intrinsic complexity of the pho-
torefractive light-induced index-change, driven by several charge transport
mechanisms, utilizing linear and quadratic electro-optic effects, and having
a polarization-dependent tensorial behavior, contributes in giving rise to a
rich phenomenology. Much is understood now about the formation processes
of the various types of photorefractive solitons, and many of the parame-
ters can be controlled individually: at the same time numerous questions
are still open. Also important, research on solitons in photorefractives has
benefited not only the soliton community, but has also introduced a number
of new ingredients to photorefractive studies at large. For example, under-
standing the propagation dynamics of beams in photorefractives (rather than
two- and four-wave-mixing), including the formation of self-oscillators (e.g.,
the so-called ”double phase conjugator”) has considerably benefited from the
understanding gained in photorefrative soliton research. Likewise, exploring
spatially-localized effects that emerge and find their full realization directly
within the sample, such as instabilities and spontaneous pattern formation,
with and without a cavity, is now nicely understood through the intimate
connection between solitons and modulation instability [4]. These distinguish
soliton phenomenology from holographic and wave-mixing schemes, which, by
nature, deal principally with the manipulation of light as a device to an effect
which occurs outside the crystal. In this Chapter, we attempt to provide an
updated overview on the fascinating phenomenon of photorefractive solitons,
which continuously brings in new surprises, new effects, new excitement, to
the photorefractives community, to the much broader nonlinear optics com-
munity, and to soliton science at large.

2 The discovery of solitons in photorefractives

In the wake of renewed interest in soliton propagation, triggered by studies
on temporal solitons in an ever more competitive fiber optic network, the be-
ginning of the 1990s see an intense effort aimed at finding accessible physical
systems in which to experimentally investigate spatial solitons. Conventional
Kerr-type nonlinear schemes presented crippling limitations connected to the
extremely high optical intensities involved, and suffering from the fundamen-
tal constraints associated with the instabilities and catastrophic collapse of
Kerr solitons in bulk media. Motivated by the strong nonlinear response of
photorefractive crystals, even at low optical intensities, M. Segev, B. Crosig-
nani, and A. Yariv, were able to formulate in 1992 the first photorefraction-
based self-trapping mechanism. This embryonic idea sets the beginning of the
field, and, indeed, of our description [5].

A spatial soliton is a beam which, by virtue of a robust balance between
diffraction and nonlinearity, does not change its shape during propagation. A
direct observation of a spatial soliton in photorefractives is shown in Fig.(1).
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Fig. 1. Top view of spurious scattered light produced by transient centrosymmetric
solitons in a biased sample of potassium-lithium-tantalate-niobate (KLTN). (a)
Linear diffraction from an input Full-Width-Half-Maximum (FWHM) of 6 µm to
150 µm. (b-c) Solitons formed with opposite values of external field. Taken from
[11]

Before the discovery of photorefractive solitons, nonlinear optics in photore-
fractives was centered on diffusion-driven wave-mixing schemes, typically re-
sulting in high energy exchange between the interacting waves, a mechanism
at the heart of photorefractive self-oscillation and ”passive” phase conju-
gators. During that phase, other settings, which exhibited elevated phase-
coupling (and much lower energy-exchange) attracted only remote interest.
Furthermore, during diffusion-driven photorefractive wave-mixing, beam en-
ergy is spontaneously driven into modes not present in the launch, leading to
the highly deteriorating phenomenon called beam fanning: the exact opposite
of a precursor to the orderly events which accompany a solitary wave. Evi-
dently, at the time there was no indication of any kind that photorefractives
could support solitons. Segev et al., however, argued that since wave-mixing
was intrinsically accompanied by a mutual phase-modulation, one could find
a condition in which the plane-wave components of a diffracting beam could
mix so as to lead to a trapping self-phase modulation: their mutual exchange
could compensate for the linear dephasing between the plane-wave compo-
nents of a beam, and thus counteract diffraction altogether. They observed
that, in contrast to schemes where the main mixing agent is diffusion, lead-
ing to the highly asymmetric fanning process, a symmetric mutual phase-
modulation could be achieved through the application of an external bias
field. They concluded that, when the diffusion space-charge field could be ne-
glected with respect the external bias field, a symmetric self-focusing occurs
and self-trapping effects should emerge. Under such conditions, fanning itself,
being mediated by diffusion, would have a secondary effect [6].

In order to achieve a set-up symmetric with respect to the propagating
axis, the beam should be launched in a zero-cut uniaxial sample along the
ordinary axis a, with the external biasing field E0 applied along the pol-
ing optical axis c, through two electrodes brought to a relative potential V .
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An optimal arrangement was identified in Stontium-Barium-Niobate (SBN)
doped with rhodium impurities. Characterized by an r33 � 220pm/V , for
an extraordinary c polarized beam launch, index modulations of the order
of |∆n| � (1/2)n3r33E0 ∼ 2 − 5 · 10−4 for achievable fields of the order of
E0 ∼ 1-3kV/cm could be reached, a nonlinearity sufficient to support the
formation of a 10 µm wide soliton.

Fig. 2. The original soliton observation schematic, as reported in [7]. The extraor-
dinary launch beam is focused in proximity of the input facet. Transient dynamics
were detected recording the output intensity transmitted through an appropriate
aperture positioned before the output detector.

The first pioneering experiments, reported in [7] were carried out with
the set-up indicated in Fig.(2). In relating the first results, we more often
delve upon details of transient - as opposed to steady-state - effects, and
miss the main and revolutionary point: where no previous phenomenology
even hinted at self-focusing, these first experiments indicated, unmistakably,
that a visible continuous-wave beam propagating in a biased sample would
actually self-trap, the ensuing spatial soliton being readily accessible to di-
rect observation (see Fig.(1)). Although the initial conjecture would later
not prove to be greatly adherent with first findings, it did express the main
physical idea supporting the phenomena. These pioneering results established
that very narrow beams launched in a properly-biased photorefractive crystal
would self-trap, and propagate in a robust fashion, undistorted by fanning
and other noise sources in the crystal or even fairly large deviations from
optimal launch conditions [8]. For example, it was established that a 15 µm
sized continuous-wave 457nm µW beam would not suffer fanning and self-
trap for external fields from 400-500 V/cm. This observation led to a rapid
series of predictions and experiments, which now form the phenomenological
basis of photorefractive spatial solitons [8, 9, 10].
As commonly occurs when scientific progress is in action, those first experi-
ments posed more questions than answers. First, the results indicated a tran-
sient self-trapping process (see insert in Fig.(2)), during a time window of
several hundreds of milliseconds, not characterized by stringent existence con-



Photorefractive Solitons 5

ditions, as would have been expected for normal self-trapping, where diffrac-
tion is exactly balanced by a specific value of nonlinearity. On the contrary,
beam intensity and applied bias field, two parameters assuredly implicated
in the nonlinear response, could be considerably varied without significant
changes in self-trapping. But even more astonishingly, the tentative launch
of two-dimensional (circular) beam led to its stable self-trapping. This at
once indicated that the underlying nonlinear mechanism was not Kerr-like,
since the catastrophic collapse associated with self-focusing in Kerr media
did not occur. For some reason, the intrinsic anisotropy of the light-induced
space-charge-field, resulting both from the application of an external bias
along one transverse direction only, and the directionally resolved electro-
optic response, allowed for a two-dimensional soliton [7, 8, 9]. Interestingly,
both aspects, the transient/non-parametric and quasi-circularly-symmetric
nature of these first manifestations, which are reproducible in all photore-
fractive materials that can support solitons, are still not fully understood
even today (see sections 4 and 5). The observation of a two-dimensional soli-
ton in a bulk medium has attracted interest and sometimes fomented outright
debate. At the same time, the transient nature was generally looked upon as
an undesired and limiting effect. It cast a shadow both as to the nature of
the interaction, but more importantly, as to its stability. Transient effects of
the sort had a history in photorefraction, and they were attributed to charge
accumulation in dark regions of the sample of the photo-excited charge, de-
pleting illuminated portions and possibly screening external bias.

This triggered the idea that the transient nature of the self-trapping was
an effect of charge accumulation screening E0: free-charges would be photoex-
cited across the beam profile, and, drifting in the external field, would reach
the bordering dark regions, and get trapped there. These trapped charges
would give rise to an internal (space-charge) field with a polarization oppo-
site to E0. In SBN, this lowering (screening) of the applied field at the illu-
minated regions would locally lead to electro-optic lensing. The decay of this
(induced) lens with time would then be a consequence of the fact that charge
would continue to separate until E0 was totally screened, thereby saturating
and flattening the induced ”lens”. In this, investigators found the solution:
they would foresee a compensating mechanism through which accumulated
charge could be eliminated by homogeneously illuminating the sample, which
amounts to increasing the dark sample conductivity (see Fig.(3)). On the ba-
sis of the relative intensity of the beam to the background, there would exist
a dynamic equilibrium leading to a steady-state lensing effect [12, 13, 14, 15].

As the model was reformulated on this new, an to some extent, simpler
screening idea, foreseeing the artificial enhancement of crystal dark conduc-
tivity, Castillo et al. [16] reported steady-state self-focusing, using a homoge-
neous illumination to free accumulated charge. Finally, Shih et al. [17, 18] and
Kos et al. [19] were able to not only observe this non-transient soliton phe-
nomenology, but also relate it to the new model. This type of self-trapping is
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Fig. 3. Scheme used to stabilize screening solitons, as described in [17] and [19].
Now the diffracting launch beam is accompanied by an ordinary unfocused wave
appropriately extracted from the single laser.

since termed a screening soliton, and constitutes the most commonly studied
type of photorefractive soliton. Its explanation requires a treatment which
goes beyond the small modulation depth treatment, and for which single
mode description, such as the involved in two-wave mixing, is unsatisfactory.

Photorefractive solitons have since been observed in SBN, BSO, BGO,
BTO, BaTiO3, LiNbO3, InP, CdZnTe, KLTN, KNbO3, polymers and organic
glass.

3 A saturable nonlinearity

The formulation of a descriptive and predictive theory for photorefractive
solitons involves some profoundly different aspects and theoretical tools than
those employed in traditional wave-mixing theories. First, no periodic struc-
ture is present, and second, in most configurations, all the physical variables
vary across the beam profile by a large fraction (e.g., from peak to zero in-
tensity) such that the modulation cannot be treated as a small perturbation.
However, steady-state photorefractive solitons have two intrinsic symmetries
which reduce the problem: they are evidently time-independent, and their
intensity I is independent of the propagation coordinate z. Yet the heart of
complexity is nonlinearity, and even for a z-invariant photoionizing intensity I
there is still a wide range of parameters, of which only a small subset can sup-
port solitons. In order to formulate a semi-analytic theory, a one-dimensional
reduction must be implemented: the beam should be such that no y-dynamics
emerge, the soliton intensity being solely x-dependent [I(x)]. Experimentally,
this was achieved by launching a beam focused down through a cylindrical
lens, and quite similarly this has led to quasi-steady-state self-trapping in the
absence of background [9], and to steady-state screening solitons for appro-
priate values of E0 (see Fig.(4)) [19].
In fact, in many aspects these one-dimensional (stripe) waves, generally
termed one-plus-one dimensional screening solitons [(1+1D)], share with
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Fig. 4. A one-dimensional soliton observed in biased SBN. Top: input intensity dis-
tribution, output linear diffraction (no bias), and output self-trapped beam. Center
and bottom: profiles. As reported in [19]

their needle-like counterparts, which are therefore two-plus-one-dimensional
screening solitons [(2+1D)], the same behavior. Although (2+1)D self-trapping
in photorefractive media is still not fully theoretically understood (see section
4), the theory of (1+1)D photorefractive solitons [12, 13, 14, 15] constitutes
the basic confirmation that photorefraction supports self-trapping.

In most conditions of interest, the optical intensity distribution I(x) is
such that, for an electron-dominated photorefraction, the resulting concen-
tration of photo-excited electrons N , the concentration of acceptor impuri-
ties Na, and the concentration of donor impurities Nd follow the hierarchy
N << Na << Nd. Under these generally valid assumptions, the space-charge
field E is related to the optical intensity I through the nonlinear differential
equation [20]

E(Ib + I)
1

1 + ε
Naq

dE
dx

+
kbT

q

d

dx

(
(Ib + I)

1
1 + ε

Naq
dE
dx

)
= g. (1)

Here, ε is the sample dielectric constant, q is the electron charge, kb is the
Boltzmann constant, T is the temperature, and g is a constant related to
the boundary conditions, i.e., to the voltage V applied on the x-facets Lx

apart. Ib is the so called background illumination, the homogeneous optical
intensity that allows a finite crystal conductivity. We emphasize that none of
the small-modulation methods can be used to linearize Eq.(1) and solve for
solitons. Instead, a profoundly different approach has to be taken.

3.1 Nonlinearity

The structure of Eq.(1) and the presence of the term (1 + ε
Naq

dE
dx ) indicate

a natural normalization procedure to enact an approximate approach: Y =
E/E0, Q = (Ib + I)/Ib, and ξ = x/xq = x/[εE0/(Naq)]. We might note
that, using the conventional scaling implemented for wave-mixing, xq can
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be identified with a saturation scale, i.e., that spatial scale under which the
maximum attainable charge (when the concentration of ionized donors N+

d ≈
Na) cannot screen E0 (which becomes comparable with the saturation field
Eq). From Eq.(1) Y and Q are now related through

Y Q

1 + Y ′ + a

[
Q′

1 + Y ′ −
Q

(1 + Y ′)2
Y ′′

]
= G, (2)

with a = NakbT/εE2
0 and G = gE0/Ib. The prime stands for (d/dξ). Equation

(2) can be formally solved, without approximations, for Y to give

Y = −a
Q′

Q
+

G

Q
+

GY ′

Q
+ a

Y ′′

1 + Y ′ . (3)

We can now identify the various terms with precise physical processes, as we
shall see. Equation (3) is rendered tractable by the fact that the greater part
of spatial soliton studies involve the trapping of beams with an intensity Full-
Width-Half-Maximum (FWHM) ∆x ∼10µm. For most configurations, xq ∼
0.1 µm, and η = xq/∆x ∼0.01 represents a smallness parameter. In other
words, screening solitons do not deplete photorefractive charge. A dimen-
sional evaluation of the various terms for the appropriate high-modulation
regime indicates that

Y (0) =
G

Q
+ o(η), (4)

since a ∼2.5 , and G �-1 [15]. A first correction is obtained by iterating this
solution into Eq.(3), and the resulting expression for Y is

Y (1) =
G

Q
− a

Q′

Q
− Q′

Q

(
G

Q

)2

+ o(η2). (5)

The first dominant term is generally referred as the screening term. It repre-
sents, in our discussion, the main agent leading to solitons. It is local, in that
it does not involve spatial derivatives or integration, has the same symmetry
of the optical intensity Q, and represents a decrease in E with respect to
E0 on consequence of charge rearrangement (G �-1). So perhaps the most
astonishing fact of our discussion is that, in truth, for a large variety of con-
ditions, this form of self-focusing (including self-defocusing) is the dominant
effect, as the plentiful family of reported observations that have followed the
1992-1993 discovery imply. The second term, of first order in η, is simply
the high-modulation version of what is generally called the diffusion field
(Ed). The third, again of first order in η, is the coupling of the diffusion field
with the screening field, a component sometimes referred to as deriving from
charge-displacement [21]. Both these two last terms are nonlocal, in that they
involve a spatial derivative, and thus provide an anti-symmetric contribution
to the space charge field (Y ) for a symmetric beam I(x) = I(−x). That is,
these last two terms lead to a beam self-action of opposite symmetry of that
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required to support solitons: whereas for conventional mixing studies they
play the central role, here they lead to beam self-bending (or self-deflection),
which, for most configurations, amounts to a slight parabolic distortion of the
preferentially z-oriented trajectory. The subject has attracted interest over
the years and has helped build an understanding into the limits of the local
saturable nonlinearity model [10, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29].

In order to identify the nonlinearity, we must now translate the space-
charge field E into an index modulation. The standard soliton set-up is such
that a negative uniaxial zero-cut sample is positioned so that the x-axis is
the direction along which E0 is applied, the soliton beam of intensity I is
extraordinarily-polarized and is propagating along z, while Ib is obtained
through a co-propagating ordinarily-polarized plane-wave [17]. For a non-
centrosymmetric photorefractive, like SBN, ∆n = −1

2n3r33E, n being the
unperturbed crystal index of refraction, and rij the linear electro-optic ten-
sor of the sample. On taking, consistently with our iterative scheme, the
expression of Eq.(4), we obtain the nonlinearity

∆n(I) = −1
2
n3r33

V

Lx

1
1 + I/Ib

= −∆n0
1

1 + I/Ib
, (6)

which constitutes a saturable nonlinearity, identical (within a constant term)
to the nonlinear index change in a homogeneously-broadened two-level-
system.

3.2 The soliton-supporting nonlinear equation

A soliton is loosely defined as a wave that preserves its shape and velocity
throughout propagation, while, very importantly, displaying a particle-like
behavior when made to interact (”collide”) with other solitons. As such, soli-
tons possess a number of conserved quantities, such as power, momentum,
Hamiltonian, etc. [4]. Optical spatial solitons, in their scalar manifestation,
are generally governed by the nonlinear equation for a monochromatic parax-
ial beam [

∂

∂z
− i

2k

d2

dx2

]
A(x, z) = − ik

n
∆nA(x, z) (7)

where k = 2πn/λ is the wave-vector, A is the extraordinary component of
the slowly varying optical field, i.e. Eopt(x, z, t) = A(x, z)exp(ikz − iωt),
ω = 2πc/nλ, and I = |A(x, z)|2. We seek stationary (non-diffracting) so-
lutions of the form A(x, z) = u(x)eiΓz

√
Ib, normalize the transverse spa-

tial scale to the so-called nonlinear length scale d = (±2kb)−1/2, i.e.,
ξ = x/d, which for photorefractive solitons is obtained from the expression
b = (1/2)kn2r33(V/Lx), and obtain [12, 15]

d2u(ξ)
dξ2

= ±
(

Γ

b
− 1

1 + u(ξ)2

)
u(ξ). (8)
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The plus sign is for b >0, the minus for b <0. The sign of b corresponds to
the sign of ∆n0, and implies a self-focusing, for b > 0, or a self-defocusing,
for b < 0, nonlinearity, having established that E decreases across the beam
profile. Applying the external bias in a particular direction with respect to the
crystalline axes univocally establishes the sign of the nonlinearity, through
the sign of r33. For example, in SBN applying E0 in the direction of the
crystalline (ferroelectric) c axis implies b > 0, and we observe a self-focusing
nonlinearity. It is possible to apply E0 in a direction opposite to ferroelectric
axis, thus effectively changing the sign of b, then E0 must be smaller than the
coercive field, otherwise it may render the ferroelectric crystalline structure
unstable and de-pole the crystal. Both defocusing and focusing nonlinearities
support solitons. A self-focusing nonlinearity traps a conventional bell-shaped
beam into a bright soliton; a self-defocusing nonlinearity traps a wave feature,
such as a notch generated by a π phase jump, whose structure is enlarged by
the diffraction of surrounding illuminated regions, the ensuing propagation
invariant wave being termed a dark soliton.

Equation (8) can be integrated (by quadrature) once, giving the relation-
ship Γ/b = log

(
1 + u2

0

)
/u2

0 for bright beams, and Γ/b = 1/
(
1 + u2

∞
)

for
dark, where u∞ = u(∞) = −u(−∞), and u0 = u(0) (u2

0 = I(0)/Ib being
referred to as the intensity ratio).

3.3 Soliton waveforms and existence curve

As can be imagined, the self-trapped waves u, solutions of Eq.(8), form an iso-
lated subset of all possible dynamical evolutions described by Eq.(7). The im-
position of z-invariance implies not only a specific relationship between beam
parameters, but fixes the actual waveform u in all its details (see Fig.(5)). In
general, such a prediction can have little if no physical meaning. For solitons,
however, we have two countering effects, diffraction and self-focusing, which
are coupled by nonlinearity to form a feedback mechanism. The result is that
most soliton solutions are stable to perturbations, and represent an attractor
to system dynamics. This, in turn, contains the beauty and physical appeal of
soliton physics: that a propagating beam, interacting in a non-trivial way with
a hosting medium, should preferably be attracted to a robust, propagation-
invariant, and very specific wave-form, instead of producing an unstable and
unpredictable chaotic system.

Returning to our system, what are the soliton wave-forms, and, more
importantly, what are the beam parameters, ∆ξ (associated to ∆x) and in-
tensity ratio u2

0, that characterize the subset of soliton solutions? The issue
is of particular importance, because, although self-trapping forms an attrac-
tor, launch experiments are designed to deterministically lead to a soliton,
a scheme that requires the launch to be close enough to a self-trapped wave
in parameter space (intensity u2

0 and normalized width ∆ξ). For the family
of integrable nonlinear equations, such as the Sine-Gordon, the Nonlinear
Schroedinger, and the Korteweg and de-Vries equations, an explicit solution
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can be found, for which the relationship between beam ∆ξ and u2
0 is unique.

However, for the saturable nonlinearity described by Eqs.(6,8) the ∆ξ versus
u2

0 relation is not unique, but instead yields a continuous curve commonly
termed the soliton existence curve [15] (see Fig. (6)).

Fig. 5. Soliton waveforms for bright solitons, as reported in [19].

The wavefunctions of bright photorefractive screening solitons are bell-shaped
functions which are neither a Gaussian nor a hyperbolic secant [30]. Ex-
perimentally, such solitons are generated by launching a focused-down one-
dimensional Gaussian beam with a ∆x and peak intensity I0 such that, for
the given configuration of crystal parameters n, r33, and Ib, for the given bias
E0, the resulting values of ∆ξ and u0 lie on the existence curve. For dark
solitons, in turn, the same procedure can be implemented for the relevant
(u∞,∆ξ) parameter space.

3.4 Experiments and theory

The main advantage of having formulated the theory highlighting the sat-
urable nature of the nonlinearity is that, within the limits in which the un-
derlying approximations are valid, it allows the prediction of solitons as a
specific feature independent on the particular experimental configuration.
Thus a physically identical soliton will emerge for two self-trapped beams
of, say 10 and 20 µm, as long as the applied voltage V , material response,
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Fig. 6. Soliton bright and dark existence curve, as reported in [19].

beam intensity and background illumination are such as to project the two
conditions on the very same point on the (u0, ∆ξ) parameter space. Note
that this powerful device breaks down as soon as we consider the o(η) terms,
or even simple corrections in the actual nonlinearity, such as those deriving
from dielectric nonlinearity [31].
In order to test the validity of the treatment, experiments have been car-
ried out with the aim of detecting for what conditions of launch a 1+1D
steady-state soliton would form [19, 32, 33], and some examples of results are
contained in Fig.(7) for bright solitons and Fig.(8) for dark.

Indeed other experiments have led to much the same conclusions, for
which the qualitative agreement is full, but for some regions of parameters,
where the quantitative comparison is weaker. At present it is believed that
the discrepancy is due more to the presence of extraneous effects than to
a deficiency in the model. For example, it has been observed that some of
the background illumination, which is made to propagate along an ordinary
mode, in order to not undergo substantial evolution, is actually trapped by
the soliton through the finite r13 coefficient. Another source of uncertainty
is connected to the difficulty in establishing the precise value of rij for the
given sample: this can depend on the level of purity of the poling, on the
presence of considerable clamping and on temperature.

Concerning more fundamental aspects of the model, we note that although
the results shown in Fig.(7) support the approximation contained in Eq.(4),
the actual beam evolution shows a clear and reproducible self-bending effect
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Fig. 7. Comparison between experiments and theory for (1+1)D bright screen-
ing solitons, from [32]. Here the low-intensity regime is what we specifically term
screening solitons.

Fig. 8. Comparison between experiments and theory for (1+1)D dark screening
solitons, from [?]
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that can only find its explanation in the full expression of Eq.(5). It appears
that, even though these nonlocal terms produce a parabolic trajectory, they
do not greatly influence the existence curve. From a different perspective,
we note that self-bending becomes an important issue when experiments are
carried in highly solitonic regimes, characterized by a large ratio between self-
trapped propagation distance and linear diffraction length Lz/Ld: to increase
Lz/Ld we can either use a longer sample, this increasing nonlinearly the
lateral shift, or use tighter launch beams, this increasing η.

4 Two-dimensional solitons

The (1+1)D screening solitons represent the firm experimental and theoreti-
cal foothold on which a large part of research rests, especially because of the
appealing nature of the saturable nonlinearity which gives rise to numerous
(fascinating) soliton interactions not present with Kerr-type solitons. How-
ever, the most ground-breaking achievement, both from the physical and from
the applicative point of view, is the self-trapping of (2+1)D solitons. As their
lower-dimensional counterparts, needles form both in the transient regime
- as quasi-steady-state self-trapping [7] - and in temporal steady state as
(2+1)D screening solitons [17, 18]. Such needle-like solitons were originally
documented in SBN, and have been replicated in most soliton-supporting
photorefractive media, such as other ferroelectrics [34], semiconductors [35],
paraelectrics [36], sillenites [37], and indeed for most types of self-trapping:
bright, photovoltaic [38], multimode [39, 40, 41], and incoherent [42, 43], to
name a few. Furthermore, even (2+1)D dark solitons were observed in pho-
torefractives, in quasi-steady-state [44] and in steady-state [45] under a bias
field, as well as photovoltaic [46] and incoherent [47] dark ”vortex” solitons.

An example of a dark vortex screening soliton is shown in Fig.(12). Two-
plus-one dimensional solitons form when a circularly symmetric beam is fo-
cused down onto the input face of the sample, and the initially diffract-
ing beam collapses into a non-diffracting 2D beam having an almost ide-
ally circularly-symmetric shape (see Fig.(9)). These studies, which consti-
tute one of the rare possibilities of observing (2+1)D solitons, have greatly
contributed to the understanding of the physics associated with higher-than-
one-dimensional nonlinear waves. The observation of soliton spiraling in full
3D [48], as well as fusion, fission, birth and annihilation of (2+1)D solitons
[49, 50, 51], have extended the very concept of soliton-particle behavior.

The description and understanding of the mechanisms that support
(2+1)D solitons are, to some extent even today, still incomplete. This is
because the propagation involves a nontrivial three-dimensional, anisotropic,
and spatially nonlocal nonlinear problem [52, 53, 54, 55, 56, 57]. The fact
that photorefractives can support self-trapped needles of (almost ideally)
circularly-symmetric shape seems very surprising right from the outset. More



Photorefractive Solitons 15

Fig. 9. The direct and detailed observation of a circularly-symmetric 12 µm needle
phenomenology in a non-zero-cut sample of SBN, from [18].

specifically, the external field is applied between two parallel planar elec-
trodes, and thus breaks the circular symmetry of the problem. The explana-
tion relates to the fact that the (space charge) field lines bend in the regions of
higher illumination, and, for some range of parameters seem to yield a quasi-
radial distribution of the field component giving rise to a nonlinear index
change. For example, in SBN this means that the c-component of the space
charge field has roughly a circular symmetry. The very fact that such (2+1)D
propagate in a stable fashion, not undergoing catastrophic collapse (as such
solitons in Kerr media would), is a direct indicative that the photorefractive
nonlinearity is saturable also in two (transverse) dimensions. However, during
the temporal transients, and for various values of applied field, self-trapping
manifests considerable beam ellipticity [52], excluding the direct validity of
a circularly-symmetric 2D saturable model. Nevertheless, the large amount
of experimental evidence on 2D solitons in almost every photorefractive ma-
terial in which solitons have been identified, implies that a modified model,
possibly anisotropic and slightly nonlocal, should exist [55]. What clears the
picture are the studies on (2+1)D soliton interaction-collisions. On the one
hand, spiraling and large angle collisions show that whatever anisotropic com-
ponents emerge, they do remain localized around the beam [48, 58], whereas
lower angle collisions indicate unmistakably the presence of a saturable yet
anisotropic nonlinear behavior: the repulsion of incoherent needles [59].



16 E. DelRe, M. Segev, D. Christodoulides, B. Crosignani, and G. Salamo

From a theoretical perspective, the system has two fundamental anisotropies:
the boundary conditions, which emerge from the application of an external
bias along the x-direction, and the electro-optic response, which implies a
complex tensorial index modulation depending on the beam polarization, di-
rection of the local electric field E, and the relative orientation with respect
to the crystal lattice. The result is that the nonlinear response has a nonlocal
component that is superimposed on the saturable component [54]. In order
for a quasi-circular optical symmetry to appear, the underlying space-charge
field E must be anisotropic, manifesting two characteristic lateral lobes (see
Fig.(10)) [60]. The appearance of these features, that have an increased com-
plexity with respect to the ionizing intensity I(x, y), are the basic manifes-
tation of a nonlocal mechanism. Contrary to what might seem logical, if one
attempts to identify their origin extending our knowledge of (1+1)D solitons,
these lobes do not emerge because of the nonlocal mechanisms indicated in
Eq.(5). These lobes emerge due to the matching of boundary conditions in
the higher dimensional case, i.e., they match the local field structure, in the
beam cross-section, to the x-oriented E = E0 far from the beam.

In the 2+1D case we start from the basic relation, valid to zero order in
η,

∇ · (Y Q) = 0 (9)

and the irrotational condition

∇× Y = 0. (10)

From these a lobular structure emerges (see Fig.(11)). This anisotropy which
is not at all connected to η, is simply not small in any accessible case. In
other words, the nonlocality in the (2+1)D case is intrinsic to the process,
whereas it is merely a correction for (1+1)D solitons.

The fact that 2+1D solitons are supported by this more complex non-
linearity does not substantially modify our soliton picture. One burdening
consequence, however, is that we do not have a means to formulate in a
straightforward manner an existence curve for (2+1)D solitons, nor can we
unequivocally say if such a concise and powerful tool even exists for the
higher dimensional solitons. Nevertheless, if we phenomenologically build the
set of points in which it is possible to observe circular-symmetric self-trapping
[18, 36], we find a single valued continuous curve that behaves and looks just
like the existence curve of (1+1)D solitons (albeit at somewhat higher values
of ∆ξ).

Evidence on both the existence of circularly-symmetric solitons and of
their intrinsic difference from (1+1)D solitons in photorefractives is high-
lighted by the experimental studies on transverse instability of (1+1)D soli-
tons in bulk media. In those experiments, increasing the nonlinearity leads
a (1+1)D soliton (at the proper value of nonlinearity vs intensity ratio, as
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Fig. 10. Needle electro-holography from [60]. (a-c) conventional formation of a
centrosymmetric soliton; (d) electroholography showing the lobes.

Fig. 11. Numerically evaluated x-component of E (top) for the soliton beam profile
(bottom), from [55].
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Fig. 12. A screening vortex and its guiding features, from [45]. (a) Input intensity
distribution of the vortex; (b) Diffracting vortex after linear propagation to the
output of the sample; (c) Self-trapped output intensity distribution in a biased
sample. (bottom) Probe beam guided propagation.

Fig. 13. Transition from (1+1)D to (2+1)D self-trapping, from [61].

determined by the existence curve); then, a further increase in the nonlinear-
ity results in beam breakup into an array of circularly-symmetric solitons, as
shown in Fig.(13) [61].

5 Temporal effects and quasi-steady-state dynamics

One of the main characteristics of photorefraction is that it is a cumulative
process. This is the origin of its elevated response even at low optical in-
tensities. Evolution is dominated by a charge redistribution process which
leads to a time constant τ ∝ 1/I. For small-modulation depth conditions I is
almost constant, and a single-time-constant behavior can be identified. For
spatial solitons the story is quite different: not only are we faced with a high
modulation response, and the time constant changes in the transverse plane,
but since they form out of a three-dimensionally resolved diffracting beam,
time behavior is also resolved in the propagation direction. The result is an
evolution which presents a number of surprising phenomenologies, which are,
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however, complicated and difficult to describe (an example that goes beyond
soliton studies can be found in [62]).

Possibly the most important, and, indeed, surprisingly, effect is observed
when launching a diffracting beam in an appropriately biased sample, with-
out any appreciable background illumination. As reported in the very first
experiments on solitons by Duree et al. in Ref.[7], the beam is observed to
form, after a time interval of the order of 10ms, a spatial soliton, remain
almost stationary for an interval of 20ms, and then decay into a once again
diffracting beam. This peculiar sequence, which involves a rare plateau evo-
lution, is referred to as a quasi-steady-state soliton.
The time dependent version of Eq.(2) truncated at zero order in η reads

∂Y

∂τ
+ QY = G, (11)

where τ = t/τd, τd = ε0εrγNa/(qµs(Nd−Na)Ib) is the characteristic dielectric
time constant, γ is the recombination rate, µ the electron mobility, s the donor
impurity photoionization efficiency, and, as occurs for most configurations of
interest to soliton dynamics, the charge recombination time τr=1/(Nγ) is
much shorter than charge displacement dynamics, and no time dependence
in the boundary conditions are considered (G=-1). For small modulation,
Eq.(11) gives the characteristic exponential dynamics with t = τd/Q, but as
soon as Q is spatially resolved, and furthermore is itself evolving, a continuum
of different time constant contribute. Seen in a different perspective, soliton
time evolution is highly time-nonlocal, as the formally equivalent integral
version of Eq.(11)

Y = e
−

∫ τ

0
Qdτ ′

(
1 +

∫ τ

0

dτ ′e
∫ τ′

0
Qdτ ′′

)
, (12)

indicates [54]. The full complexity of this behavior emerges during transients,
i.e., when I changes in an appreciable manner with time. This occurs most
evidently during the very first collapsing stage, for times τ ≤ 1/(1+u2

0), and
leads to a stretched exponential evolution [63]. A characteristic of multi-scale
processes, this behavior is common to the entire family of soliton supporting
cumulative nonlinearities. A numerical approach to Eq.(12) coupled to the
parabolic wave equation confirms experimental findings, but to date there is
no clear understanding as to why the soliton should pass through a plateau,
and, more importantly, how to evaluate the so-called threshold nonlinear-
ity for which self-trapping is achieved, the duration of the plateau, and the
nonlinear equation, such as Eq.(8), for which the waves are eigenfunctions.
Furthermore, we do not have a means to predict the actual trapping ∆x at
the plateau, for a given nonlinearity.

In order to highlight the sole role of high modulation depth, we can con-
siderably simplify our predictions, excluding nonlocality, by imposing that Q
not have relevant time-dependence [64]. In this case Eq.(12) is simplified to
give
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Y = e−τQ(1 +
1
Q

(eτQ − 1)), (13)

where Q is an appropriate time average. Whereas this approach can be
meaningful and useful for conditions in which a soliton (i.e., the beam I)
is steady, such as for steady-state incoherent solitons which we will describe
below, it can say nothing as to beam transients. It has been speculated that
Eq.(13) could be valid when a negligible amount of diffraction is involved
[65, 66, 67, 68, 69].

Delaying the discussion of incoherent self-trapping, a consequence of cu-
mulative inertial response, to section 10, we add a mention to the wealth of
transient phenomenologies that occur for higher-dimensional needles [70], and
those associated to a time-dependent external bias E0 [11, 71, 72, 73]. Lastly,
we should mention the study of single pulse propagation and space-charge
build-up [74, 75].

6 Various photorefractive mechanisms supporting
self-trapping

One of the nicest features of self-trapping of optical beams in photorefrac-
tives is the diversity of mechanisms that can support solitons. Apart from
the solitons described in the previous section, which relied on an externally-
applied bias field, self-trapping in photorefractives can also arise from pho-
tovoltaic effects [76], or from diffusion-driven effects [77], or from resonantly-
enhanced effects caused by the excitation of both electrons and holes [78]. In
several cases, combinations of two of these effects can also lead to solitons
[e.g., solitons supported by the photovoltaic and the screening nonlineari-
ties simultaneously]. Furthermore, in some cases, self-trapping can arise from
semi-permanent changes in the crystalline structure, either though cluster-
ing of ferroelectric domains [79], or through re-poling of macroscopic regions
[80, 81], both being driven by the local space charge field. Such permanent
changes are in fact ”fixed” (soliton-induced) waveguides, acting as microstruc-
ture optical circuits ”impressed” into the volume of the bulk nonlinear crystal.
To this date, this is one of the very few techniques to create intricate 3D op-
tical circuitry. In this section, we briefly review these additional mechanisms
supporting self-trapping of optical beams in photorefractive media.

6.1 Photovoltaic solitons

Soliton-supporting mechanisms appear in photorefractives also in the absence
of electric fields, the major example being photovoltaic solitons [76, 82]. Here,
in open-circuit conditions and for the (1+1)D geometry, the non-uniform op-
tical excitation translates into a non-uniform photoinduced current. This, at
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steady state, must be countered by the drift of photo-excited charge (elec-
trons) in response to E. Under conditions analogous to those leading to
Eq.(4), for a beam with features ∆x of the order of several microns, we
arrive again at a saturable nonlinearity

∆n(I) = −1
2
n3r33Ep

I

Id + I
= −∆n0,p

I

Id + I
, (14)

where Ep = βphNaγ/(qµs), Id the equivalent dark illumination, the constitu-
tive relation for the current along x being J = qµNE +βph(Nd −N+

d ). Much
in the same fashion of Eq.(8), this nonlinearity leads to a nonlinear soliton
equation that supports bright and dark solitons on the basis of the sign of
∆n0,p, i.e., on the sign of βph [76, 82].

Most of the experiments with photovoltaic solitons have been carried out
in LiNbO3, for which βph is negative for an extraordinary beam propagating
along z, this leading to the observation of one-dimensional dark photovoltaic
solitons [83].

Fig. 14. Photovoltaic dark soliton setup, from [83]. Note the use of a resolved
transverse phase-structure obtained by having part of the launch beam pass through
an appropriate piece of glass.

As occurs for the screening type nonlinearity, photovoltaic solitons can
also form in the higher-dimensional case. For LiNbO3, these form as dark
vortex solitons which are supported by a ”spiraling” transverse phase modu-
lation [46] (see Fig.(16) ). In KNSBN, photovoltaic self-action is self-focusing,
and even bright (2+1)D photovoltaic solitons have been detected [38]. More-
over, it has been predicted and demonstrated that the use of a background
illumination, not a strict requirement in photovoltaics, allows the transitions
from the defocusing to a focusing nonlinearity in LiNbO3 [84].

6.2 Resonantly-enhanced self-trapping in semiconductors

One of the nicest features of photorefractive solitons is the very low power
level at which they can form, allowing soliton experiments with microwatt
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Fig. 15. Observations of dark photovoltaic solitons, from [83]. (a) linearly diffract-
ing intensity distribution of a dark notch; (b) self-trapped intensity distribution,
for various propagation distances in the sample.

Fig. 16. Self-trapping of a photovoltaic vortex, from [46]. (a) output intensity
distribution before self-focusing begins, and phase pattern; (b) output intensity
distribution trapped by the photovoltaic field, and phase pattern.

(and lower) power levels. As will be discussed in the section on applications,
photorefractive solitons, and the waveguides they induce, combine properties
that suggest interesting applications ranging from reconfigurable directional
couplers, beam splitters, waveguide switching devices, tunable waveguides for
second harmonic generation, and highly efficient optical parametric oscilla-
tors in soliton-induced waveguides. In general, however, the formation time
of solitons in most photorefractive materials is rather long, except when very
high intensities are used [32]. This is because the photorefractive nonlinear-
ity relies on charge separation, for which the response time is the dielectric
relaxation time, i.e., inversely proportional to the product of the mobility
and the optical intensity, and the mobility in photorefractive oxides is low.
In principle, however, photorefractive semiconductors, (e.g., InP, CdZnTe),
have a high mobility and could offer formation times a thousand fold faster
than in the other photorefractives. However, the electrooptic effects in these
semiconductors are tiny, which implies that solitons that are as narrow as 20
optical wavelengths necessitate very large applied fields, making solitons in
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them almost impossible to observe. But, in some of these materials (InP and
CdZnTe) that have both holes and electrons as charge carriers, a unique res-
onance mechanism can greatly enhance the space charge field by as much as
10 times (and more) over the applied electric field. This enhancement yields
large enough self-focusing effects that can support narrow spatial solitons.
The resonant enhancement of the space charge field has led to the observa-
tion of solitons in photorefractive InP [78, 35] and CdZnTe [85].

As mentioned, the resonant enhancement of the space charge field occurs
in materials with both types of charge carriers, both being excited from a
common trap level: one excited optically and the other excited by temperature
(or by a second optical beam of a longer wavelength). These two excitations
work in opposing fashions: one fills (populates) the mid-gap traps whereas
the other empties them. At steady state, when a focused beam illuminates
a biased crystal of this kind, and the beam intensity is such that the photo-
excitation rate of one type of carrier is comparable to the thermal excitation
rate of the other type of carrier, the concentration of both free carriers at
the illuminated region decrease drastically. The intuitive explanation is as
follows [86]. Under proper conditions, the ratio between the concentrations
of electrons and holes is equal to their ratio in the absence of light, and thus
has a constant (coordinate-independent) value (see appendix of [17]). The
net excitation rate of the traps is the difference between the thermal (holes)
and optical (electrons) excitation rates. At resonance, the net excitation rate
goes to zero. At the same time, at steady state the excitation rate must be
equal to the recombination rate, which, in turn, is proportional to the free
charge concentration. Hence, at resonance (when the excitation rates of holes
and electrons are comparable) the free charge concentration goes to zero.
Consequently, the local electric field is highly enhanced because the current
at steady state must remain constant throughout the crystal. For a given
temperature, this enhancement occurs at a specific intensity (the resonance
intensity), for which the thermal and optical excitation rates are comparable.
It is a resonant enhancement, although it is an intensity-resonance and not an
atomic resonance. The enhanced electric field compensates for the smallness
of the electrooptic coefficient and enables a sufficiently large change in the
refractive index to support narrow solitons.

The observation of solitons in photorefractive semiconductors [[78, 35, 85]]
is especially important for several reasons. First, the solitons are generated at
optical telecommunications wavelengths. Second, they facilitate microsecond
soliton formation times even at very low (microwatt) optical power. These
suggest that optical spatial solitons could form from light beams emerg-
ing from ordinary optical fibers (conventional data-transmission lines) on
nanoseconds time scales, and could be all-optically switched on-off by em-
ploying the intensity resonance in photorefractive semiconductors.
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Fig. 17. Observed transverse intensity distribution for (1+1)D self-trapping in InP,
from [78].

6.3 Diffusion-driven self-action

In a conventional noncentrosymmetric crystalline phase, such as that char-
acterizing SBN or BaTiO3 at room temperature, charge diffusion leads to an
asymmetric index profile, which translates into a transverse phase chirp that
produces self-bending. As discussed in section 3.1 in conjunction with Eq.(5),
diffusion is typically merely a correction for screening soliton studies.

Consider now a situation where no external field is applied. On the basis
of Eq.(1) with g = 0 (null current), E = −kbT

q
1

I+Ib

dI
dx . Higher order correc-

tions due to saturation in this case are even less important, such that for a 10
µm beam, they represent a relative import of the order of εr ·10−6, where εr is
the relative dielectric constant. For a sample heated above the ferroelectric-
paraelectric phase-transition, manifesting a quadratic electro-optic response,
the resulting nonlinearity leads to a symmetric lensing effect, of the type
∆n(I) ∝ ( 1

I+Id

dI
dx )2. Although in most conditions, such self-action is negligi-

ble, in the very proximity of the phase-transition, where εr attains values of
the order of 104, self-focusing, the precursor of soliton formation, has been
observed [77, 87]. The resulting nonlinear equation, which can be extended
also to the full (2+1)D case, represents the singular situation in which a
nonlocal nonlinearity (involving a spatial derivative) allows for the explicit
analytical prediction of both the observed nonlinear diffraction, along with
such novel effects as ellipticity recovery (see Fig.(18)), and the prediction of
a full family of solitons, which, however, requiring extremely pure samples
and precise thermal conditions, and have not been observed.

6.4 Fixing the photorefractive soliton: Self-trapping by altering
the crystalline structure

Solitons in photorefractives are typically supported by the linear polarization
response to the local space-charge field, P = εE. However, optical beams can
also self-trap in photorefractiue media by altering the crystalline structure
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Fig. 18. Diffusion-driven ellipticity recovery. The input ellipticity (a) Λ is recovered
at the output (b-e) as the crystal temperature T is brought closer to the Curie
temperature, enhancing diffusion-driven effects, from [87].

of the nonlinear medium in which the beam propagates. This happens when
the local space charge field E becomes comparable with the coercive field
Ec, and is directed in a direction different from the poling direction. For
low-modulation gratings, such conditions rarely emerge. But photorefractive
solitons, being entities with an inherently high modulation depth, are always
associated with locally high electric fields that can readily depolarize a sam-
ple. Consider a screening soliton, which exists as a consequence of an external
bias E0 directed along the poling axis x. Once the soliton has formed, charge
has redistributed so as to screen, at least in part, the field. This means that
across the beam profile, charge distribution engenders a field that is approx-
imately opposite the bias. Removing the illumination (and the background)
and switching the external bias off unravels this field. The result is that
EV =0 � −E0 in the region that before hosted the soliton. In SBN Klotz et
al. have shown how this field can, not only depolarize the sample, but actu-
ally permanently fix the waveguiding structure that accompanies the soliton,
an achievement that can have considerable impact in soliton based devices
[80, 81].

Fig. 19. Domain and cluster structure induced by a spontaneous self-trapped pro-
cess in metastable KLTN, from [79]. (a-b) Underlying domain structure as seen
with the two principal polarizations; (c-d) melting away of domains into clusters,
clusters into a homogeneous structure, as temperature is increased from the Curie
point.
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Ferroelectric clusters can also play a more dynamic role in spatial self-
trapping, when they interplay with light-generated space-charge during soli-
ton formation. This has been observed in a metastable paraelectric, in prox-
imity of the transition temperature, where charge-diffusion fields become
comparable to Ec [79]. The result is a complicated optical-domain dynamic
which also leads, in appropriate conditions, to a form of spatial self-action
known as spontaneous self-trapping (see Fig.(19)). The description of these
processes, which requires the modelling of domain formation, and their light-
matter interaction throughout propagation, is beyond the linear polarization
approach. Such a theory has yet to be formulated. Nevertheless, the phe-
nomenology seems to indicate a more general behavior of propagation in
metastable hosts.

7 Alternative photorefractive materials

Research into nonlinear beam propagation in photorefractives is carried out,
in parallel, in a series of relatively different materials, each presenting a
slightly modified version of the mainstream screening type nonlinearity, with
its advantages and setbacks. Amongst these, we should mention the sillenites,
such as BTO, BSO and BGO, paraelectrics, such as KLTN, and photorefrac-
tive polymers [88, 89] and organic gels [90].
Some of the original research in photorefractive self-trapping was carried out
using nonferroelectric sillenites, in a configuration similar to that used for
ferroelectric samples [16, 91, 92, 93]. The main difference between the physical
processes is that sillenites present a fairly strong natural optical activity,
which leads to polarization rotation (during propagation) of both the self-
focused and the background beams. This causes the effective nonlinearity to
change in z. Strictly speaking, solitons (diffraction-free) beams cannot exists
in such optically-active materials [94, 95, 96], at least not in the typical
scheme of screening solitons. However, using very short samples (a typical
value of optical activity is ρ0 � 6◦/mm), and employing pre-compensation
(in which the beams are not extraordinarily- and ordinarily-polarized, but
evolve to these halfway through the sample), does allow the observation of
quasi-solitons. Another setback in using sillenite crystals is in the relatively
weak effective electro-optic coefficient reff � 0.06pm/V (for BTO), which
implies the use of very high bias fields. Altogether, the sillenite crystals have
served an important role in the first explorations of steady-state self-focusing
[16], but have been rarely used for solitons experiments since then, simply
because other materials offer more favorable conditions for soliton generation.
Part of screening soliton studies are carried out in paraelectrics, where the
quadratic electro-optic effect supports a screening nonlinearity in all similar to
the noncentrosymmetric counterpart, of the form ∆n ∝ (E0)2/(1+I/Ib)2 [97].
In these, almost all the conventional photorefractive soliton phenomenology
can be observed, from (1+1)D [33] to (2+1)D solitons [36]. Dark solitons have
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yet to find an appropriate material, because in such crystals the nature of the
index change cannot be reversed upon reversal of the applied field, as is the
case for noncentrosymmetric crystals with the linear electrooptic effect. Given
the generally weak electro-optic response in the high-symmetry phase, most
studies are carried out in proximity of the ferroelectric-paraelectric transition:
the crystals must be thermalized to stabilize their dielectric response.

8 Soliton interaction-collisions

Nonlinearity generally allows the coupling and energy exchange among beams
and modes. For solitons, nonlinearity not only supports their propagation-
invariant nature, but leads to a unique coupling dynamic in which the single
solitons behave as quasi-rigid particles when they are made to interact with
one another. In fact, this particle-like dynamic is the very reason for the
term ”soliton”. In this spirit, interactions between solitons are commonly
referred to as soliton collisions, and constitute the most fascinating fea-
tures of soliton phenomena. Soliton interactions can be generally classified
into coherent and incoherent interactions. Coherent interactions of soli-
tons occur when the nonlinear medium can respond to interference effects
that take place when the beams are overlapped. They occur for all nonlin-
earities with an instantaneous (or extremely fast) time response (e.g., the
optical Kerr effect and the quadratic nonlinearity). For all other nonlineari-
ties that have a fairly long response time (e.g., photorefractive and thermal),
the relative phase between the interacting beams must be kept stationary
on a time scale much longer than the response time of the medium. When
this occurs, the material responds to interference between the overlapping
beams and they exert on each other attractive or repulsive forces, depend-
ing on the relative phase between the beams. Incoherent interactions, on
the other hand, occur when the relative phase between the (soliton) beams
varies much faster than the response time of the medium. In this case the
resultant force between such bright solitons is always attractive. Altogether,
soliton interaction-collisions are universal, exhibiting the same basic features
in spite of the widely diverse physical origins for the self-trapping. For a
detailed review on soliton interaction forces, see [3].

Photorefractive solitons play an especially important role in the study of
soliton interactions, and have here greatly contributed to soliton research at
large. This leading role is a consequence of a series of factors: the relative
ease in soliton generation, which lowers the complexity of multiple soliton
supporting schemes; the saturable nature of the nonlinearity, which offers
many features that are simply non-existent with ideal Kerr-type solitons; the
availability of both (1+1)D and (2+1)D solitons, in a 3D bulk environment;
and the relatively slow response of photorefractive materials which facilitates
the possibility of studying both coherent and incoherent collisions in the
same material system. Over the past eight years, many groups have come
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to realize the wealth of possibilities offered by soliton interaction studies in
photorefractives, and consequently many of the soliton collision features were
first demonstrated with photorefractive solitons.

The physical intuition behind soliton collisions relies on the generic idea
that a soliton is a bound state of its own induced potential, or, in optics,
a guided mode of its own induced waveguide. Having this in mind, one can
understand soliton collisions by comparing the collision angle to the (comple-
mentary) critical angle for guidance in the single soliton-induced waveguides
(that is, to the angle with the propagation axis below which total internal
reflection occurs). Whether or not energy is coupled from one soliton into the
waveguide induced by the other soliton, depends on the relation between the
collision angle and that critical angle. In terms of a ”potential well”, capture
depends on whether the kinetic energy of the colliding wave-packets results
in a velocity that is smaller than the escape velocity. If the collision occurs
at an angle larger than the critical angle, the solitons simply go through each
other unaffected - very similar to the behavior of Kerr solitons (the beams
refract twice while going through each other’s induced waveguide but cannot
couple light into it). If the collision occurs at ”shallow” angles, the beams
can couple light into each other’s induced waveguide. Now if the waveguide
can guide only a single-mode (a single bound state), the collision outcome
will be elastic, essentially very similar to that of a similar collision in Kerr
media (with the exception that now some very small fraction of the energy
is lost to free radiation). However, if the waveguide can guide more than
one mode, and if the collision is attractive, higher modes are excited in each
waveguide and, in some cases, the waveguides merge and the solitons fuse to
form one single soliton beam. Such a fusion process is always followed by a
small energy loss to radiation waves, much like inelastic collisions between
real particles. This naive picture of soliton interactions gives qualitative un-
derstanding of the complex behavior of soliton collisions, yet it is incomplete.
In reality, the interacting solitons affect each other’s induced waveguide, and
the true collision process is much more complicated.

The first experimental papers on collisions between photorefractive soli-
tons were also the first papers reporting fusion of solitons in any medium
[49, 98] (in parallel to a similar observation with solitons in atomic vapor,
for which the nonlinearity is also saturable). These experiments reported
on incoherent collisions, between (2+1)D [49] and between (1+1)D solitons
[98], during which at large collision angles the solitons passed through one
another unaffected, whereas at shallow collision angles they fused to one an-
other. Following these experiments, a team headed by W. Krolikowski studied
coherent collisions and demonstrated fission of solitons (”birth” and annihi-
lation of solitons [50, 51], which also constitutes the first observation of such
effects in any solitonic system. Other groups have followed and mapped out
coherent interactions between (1+1)D and (2+1)D solitons [99, 100]. All of
these were collisions between solitons launched with trajectories in the same
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plane. However, because the photorefractive nonlinearity is saturable, one
can also look at collisions of (2+1)D solitons with trajectories that also do
not lie in the same plane: full 3D interactions. When non-parallel solitons
with trajectories that do not lie in the same plane are launched simultane-
ously, they interact (attract or repel each other) via the nonlinearity and
their trajectories bend. The system possesses initial angular momentum: if
the soliton attraction exactly balances the ”centrifugal force” due to rota-
tion, the solitons can ”capture” each other into orbit and spiral about each
other, much like two celestial objects or two moving charged particles. This
idea was suggested in the context of coherent collisions. However, because co-
herent interactions are critically sensitive to phase, in this case solitons can
never attain stable orbits, and spiral about each other. Instead, they always
either fuse to form a single beam, or ”escape away” from each other. On the
other hand, the purely attractive nature of the force between incoherent soli-
tons and its independence of the relative phase of the two interacting solitons
makes these ideal for the orbiting observation. Under proper initial conditions
of separation and beam trajectories, solitons indeed capture each other into
an elliptic orbit [48]. If the initial distance between the solitons is increased,
their trajectories slightly bend toward each other, but their ”velocity” is
larger than the escape velocity, and they do not form a ”bound pair”. On
the other hand, if their separation is too small, they spiral on a ”converging
orbit” and eventually fuse. In reality, the 3D spiraling-interaction mechanism
is much richer and more complicated than initially thought. It turns out that
the two spiraling-interacting solitons exchange energy by coupling light into
each other’s induced waveguide. This is because the nonlinearity is saturable
and the trajectories are at shallow angles. But, because the two interacting
solitons have equal power, the energy exchange is symmetric. The energy ex-
changed is, of course, phase-coherent with its ”source” but phase incoherent
with the soliton into which it was coupled. Thus, even though the solitons
are initially incoherent with each other, the energy exchange induces partial
coherence and thus contributes to the forces involved. The end result is that
the two solitons orbit periodically about each other and at the same time
exchange energy periodically, with the two periods (the spiraling period and
the energy exchange period) being only indirectly related [101]. This com-
plicated motion is stable over a wide range of parameters [101]. To some
extent, whether or not the spiraling can go on indefinitely is yet an open
question, because it is possible that, after long enough propagation distances
(far beyond the present experimental reach), the solitons eventually merge
[102, 103]. Another interesting feature of spiraling-interacting solitons is the
fact that if one adds a tiny seed in one of the input solitons that is coherent
with the other soliton, the relative phase between these coherent components
(the seed and the other soliton) controls the outcome of the collision process,
and can turn a spiraling motion into fusion or repulsion [101]. Altogether,
the observation of spiraling-interacting solitons has introduced new concepts
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to soliton physics: not only energy (power) and momentum are conserved,
but also the conservation of angular momentum, which is the fundamental
symmetry that enables spiraling. These pioneering experiments are a charac-
teristic example of the contribution of photorefractive solitons to nonlinear
science.

Fig. 20. Collisions, from [49]. Top view of colliding incoherent diffracting beams
and solitons for different relative angles.

Fig. 21. Hybrid-soliton collisions, from [104]. (a) input launch of a two-dimensional
and a one-dimensional diffracting beam, output intensity distribution with no ap-
plied field, output intensity distribution with applied self-trapping field; (b) same
as (a) but for a smaller collision angle; (c-d) single beam self-trapping in the same
experimental conditions.

It is interesting to compare soliton and plane-wave interaction phe-
nomenology in a photorefractive. The crossing of two plane waves, even at low
angles of the order of fractions of a degree, leads to energy transfer, which,
even if mediated by space-charge components of the order of η, brings to
finite if not total coupling from one beam to the other. Two solitons, on the
other hand, behave in a diametrically opposite manner: they cross each other
without appreciable energy transfer, even when they are mutually coherent.



Photorefractive Solitons 31

Fig. 22. Soliton fusion, from [50]. Two identical solitons fuse at the output of the
sample when they are in-phase (a), whereas they repel when they are out-of-phase
(b).

Fig. 23. Soliton spiralling, from [48].(a) Beams A and B at the input face of the
crystal, (b) the spiraling soliton pair after 6.5 mm of propagation, and (c) after
13 mm of propagation. The centers of diffracting A and B are marked by white
triangles. The white cross indicates the center of mass of the diffracting beams A
and B in (b) and (c).

The conundrum has a straightforward geometrical explanation: even though
no soliton mechanism forbids the formation of a resonant coupling grating in
the region where the two beams overlap, this overlap is spatially limited by
the mutual angle θ in their propagation direction and their very narrow width
∆x, which is typically no more than 20 wavelengths wide. Thus, in two-wave-
mixing terminology, even though the coupling coefficient γ can be reasonably
high (e.g., at angles corresponding to the Debye length), the equivalent en-
ergy transfer γL, where L is the effective interaction distance in the sample, is
negligible. Altogether, since self-lensing is a purely phase-modulating mech-
anism without energy coupling to new modes, soliton interactions, even in
photorefractives (which could give rise to energy transfer driven by the dif-
fusion field) is well described by means of soliton interaction forces based
on wave-overlap integrals, and the intrinsic energy coupling mechanism that
acts in two-wave-mixing is absent.



32 E. DelRe, M. Segev, D. Christodoulides, B. Crosignani, and G. Salamo

In the spirit of driving nonlinear soliton studies to their most extreme con-
sequences, photorefraction forwards a unique possibility of studying hybrido-
dimensional soliton collisions [104]. Namely, testing to what extent a soliton
undergoes particle-like dynamics even during a collision between two solitons
of different dimensionality. The possibility of carrying out these studies arises
from the saturable nature of the nonlinearity, which facilitates stable (2+1)D
solitons, as well as the quasi-stable propagation of (1+1)D solitons in 3D bulk
media. Strictly speaking, the latter case is not stable in the absolute sense,
and would, after a sufficiently large propagation distance, suffer from trans-
verse instabilities and disintegrate into an array of 2D filaments. However,
if the (1+1)D soliton is launched with parameters close enough to the soli-
ton existence curve, and if its parameters are chosen such that the operation
point is in the saturated regime, the ”instability length” is very long, and for
all practical purposes such a (1+1)D soliton propagates in a stable fashion
in the bulk. These conditions have indeed allowed to experimentally observe
the collision between a ”needle soliton” and a ”stripe soliton” [104], resulting
in a new avenue in the investigation of particle-like behavior of solitons at
large.

A more recent series of studies targeted collisions of solitons propagating
in opposite directions [105, 106, 107, 108]. The concept actually applies to
any soliton-supporting system and introduces a profoundly different scenario
for interacting solitons [109]. Experimentally, thus far only incoherent colli-
sions between such solitons have been studied [106, 108], whereas the more
interesting case of coherent collisions [109, 107] is still unexplored [apart for
the very specific case of a vector soliton formed by counter-propagating fields
which has been recently demonstrated [110]; but this is not really a vector
soliton, and not a soliton collision experiment]. In photorefractives, however,
during an almost head-to-head collision, the interaction between the solitons
occurs along a spatially extended region, hence spatially nonlocal effects, such
as self-bending driven by diffusion fields, have an important impact on the
collision dynamics. The experiments of [106, 108] show that the soliton col-
lision dramatically modifies the self-bending of both solitons, in a way that
can be directly utilized for all-optical beam deflection, steering and control.

9 Vector and composite solitons

In their most basic form, solitons are a coherent entity described by a sin-
gle optical wavefunction. The simplest (so-called scalar) soliton occurs when
the soliton constitutes of a single field, which populates the lowest mode of
its own induced-waveguide. A more complex soliton, a vector soliton, occurs
when more than one field populates the lowest mode. These were first sug-
gested by Manakov in Kerr media, when self- and cross-phase modulation
are equal. Vector solitons, however, can be also composite: they can be com-
posed of optical fields that populate different modes of their jointly induced-
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waveguide. In one realization, composite solitons are made of a bell-shaped
(bright) component populating the lowest mode and a dark component being
the second mode. A more interesting situation occurs when the field con-
stituents of the composite-soliton populate different bound-modes of their
jointly-induced potential. These composite, multi-mode, solitons can have
two or more intensity humps, and can appear in (1+1)D and in (2+1)D, in a
variety of intriguing combinations, including (2+1)D composite solitons car-
rying angular momentum within their field constituents. As will be explained
below, almost all the experiments with vector solitons, and practically all the
experiments with multi-mode solitons, were carried out in photorefractives.

A key issue regarding a vector soliton is that interference terms between
the soliton constituents should not contribute to the nonlinear index change
(otherwise the induced potential would vary periodically during propagation).
Thus, the field constituents making up a vector soliton could originate from
orthogonal polarizations states, or from fields at widely-spaced frequencies.
In the polarization-based technique, there are no interference terms, whereas
in the widely spaced frequencies method, the interference terms are not syn-
chronized with either of the soliton constituents. Photorefractives, however,
have offered a much more appealing technique to generate vector solitons:
making up a vector soliton from field constituents that are incoherent with
one another, that is, their relative phases are randomly fluctuating. When the
relative phase between the fields making up the soliton fluctuates much faster
than the response time of the nonlinearity, their contribution to interference
terms averages out to zero. This method, suggested by Christodoulides [111],
has revolutionized the area of vector solitons. With this mutual incoherence
method, first a degenerate (Manakov-like) soliton was observed [112], the
same year that the first Manakov-type solitons were observed in Kerr media.
This was followed by an observation of a vector soliton made up of a bright
and a dark component [113]. Shortly thereafter, the first multi-mode/multi-
hump solitons were observed [114]. In this multi-mode soliton experiment,
the two input field distributions resembled the first and/or second and third
modes of a slab waveguide. Interestingly, the experiment has also shown that
it is possible to observe multi-mode solitons made up of solely higher modes
(the second plus the third modes, trapped in their jointly-induced potential
[114]). That is, the experiment has indicated that multi-mode solitons can
exist and propagate in a stable fashion for distances much larger than the
diffraction length, in spite of the fact they are made up of excited states only.
Several years later, (2+1)D dipole-type composite solitons were also demon-
strated experimentally [39, 41]. These vector solitons consist of a bell-shaped
component jointly trapped with a 2D dipole mode. The ability to generate
(2+1)D composite solitons opens up a whole new range of possibilities that
has no counterpart in a lower dimensionality. One fascinating example is the
recently observed rotating ”propeller” soliton [40]. This is a composite soli-
ton made of a rotating dipole component jointly trapped with a bell-shaped
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component. It carries and conserves angular momentum, although its con-
stituents exchange angular momentum as they propagate. The soliton turns
out to be generically robust, so much that even during inelastic collisions
with other composite solitons, the collision products are predicted to be also
composite rotating propeller solitons [115].

The relatively ease with which vector and composite solitons are gen-
erated in photorefractives, by employing the mutual incoherence technique,
has also led to a series of experimental efforts demonstrating interaction-
collisions between vector solitons. It turns out that temporal optical vector
solitons, and non-optical vector solitons are very difficult to generate, hence
the collision experiments with optical spatial vector soliton were truly pio-
neering. For example, it has been predicted, more than two decades ago, that
collisions between Manakov-like vector solitons give rise to a symmetric ex-
change of energy between the soliton constituents. This elegant phenomenon
was observed only recently, with photorefractive vector (Manakov-like) soli-
tons [116, 117]. The energy-exchanges between the soliton components (which
have nothing to do with photorefractive two-wave-mixing) have direct impli-
cations in a new form of reversible computing, in which a ”state” is coded
as the ratio between the soliton components [118]. In this scheme, compu-
tation is performed through the energy-exchange interactions (in which the
”states” change) during collisions between vector solitons. The experiments
have shown that indeed, not only such symmetric energy exchanges do occur,
but also information can be transferred through a series of cascaded collisions
between vector solitons [116, 117].

Finally, photorefractives were also the means for experimental studies
of interaction-collisions between multi-mode solitons, in which shape trans-
formations were observed [119]. These were the first ever experiments with
collisions of multi-mode solitons.

The general ideas behind multi-component vector solitons proved invalu-
able for later developments and in particular to the area of incoherent solitons
discussed in the next section.

10 Incoherent solitons: self-trapping of
weakly-correlated wavepackets

Until 1996, the commonly held belief was that all soliton structures should be
inherently coherent entities. In that year however, an experiment carried out
at Princeton demonstrated beyond doubt that self-trapping of a partially
spatially-incoherent light beam [42] is in fact possible, if the nonlinearity
has a non-instantaneous temporal response. In that experiment, the optical
beam was quasi-monochromatic, but partially spatially-incoherent and the
nonlinear medium was photorefractive, with a response much slower than
the characteristic time of the phase fluctuations in the incoherent beam. The
resultant self-trapped beam is now commonly referred to as an ”incoherent
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Fig. 24. The observation of a multimode soliton, from [114],with mode 2/mode 1 =
1.0 (a),(b) input (18 µm FWHM) and linear diffraction (27 µm) of mode 1; (c),(d)
input (28 µm) and linear diffraction (62 µm) of mode 2; (e),(f) combined input
(26 µm) and combined linear diffraction (58 µm); (g) composite soliton formed (26
µm) with application of 800 V/4 mm; (h) first mode obtained after quickly blocking
second mode; (i) steady state of first mode alone with nonlinearity on; (j) second
mode obtained after quickly blocking first mode; and (k) steady state of second
mode alone with nonlinearity on.

soliton” or a ”random-phase soliton”. One year later, the same group observed
a similar self-trapping effect with white light from an incandescent light bulb
emitting light with a wide 380-720 nm spectrum of wavelengths. This was the
first observation of a self-trapped beam made of light both temporally and
spatially incoherent: a white light soliton [43]. These two experiments have
set the basis for a new field of study in nonlinear optics: incoherent solitons.
In yet another experiment, self-trapping of dark incoherent ”beams”, i.e., 1D
or 2D ”voids” nested in a spatially incoherent beam, was also demonstrated
[47].

For self-trapping of an incoherent beam (an incoherent soliton) to occur,
several conditions must be satisfied. First, the nonlinearity must be non-
instantaneous with a response time that is much longer than the phase fluc-
tuation time across the optical beam. Such a nonlinearity responds to the
time-averaged envelope and not to the instantaneous ”speckles” that con-
stitute the incoherent field. Second, the multi-mode (speckled) beam should
be able to induce, via the nonlinearity, a multi-mode waveguide. Otherwise,
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if the induced waveguide is able to support only a single guided mode, the
incoherent beam will simply undergo spatial filtering, thus radiating all of its
power but the small fraction that coincides with that guided mode. Third, as
with all solitons, self-trapping requires self-consistency: the multi-mode beam
must be able to guide itself in its own induced waveguide (pages 86-125 in
Ref.[4]).

The understanding of how such an incoherent soliton can form also raises
some intriguing aspects in comparison to other nonlinear phenomena. Con-
ventional nonlinear optical effects are a consequence of strong material re-
sponse to (intense) optical excitation, but their macroscopic manifestation is
generally the result of distributed enhancement effects, in which weak scat-
tering is amplified by the cooperative excitation of large portions of material.
This is the basis, for example, for efficient harmonic generation and wave-
mixing. The distributed effect is induced by an extended spatial and tem-
poral coherence, itself transferred by the coherence of the coupling waves.
The discovery of incoherent solitons has made evident the basic fact that
solitons naturally break this scheme. Even though they do result from non-
linearity, their nature has nothing to do with the constructive interference of
distributed effects. On the contrary, it is an intrinsically local effect where
no coherence transfer mechanism intervenes. Thus, for the more diverse non-
optical media that support solitons, the very concept of wave is an abstract
average envelope of intrinsically uncorrelated underlying motion, that attains
physical meaning when the wave-medium interaction does not react to the
erratic fluctuations of the wave constituent.

The experiments demonstrating incoherent solitons have taken the soli-
tons community by surprise, because typically, in most of soliton research
(also beyond Optics), all experiments were preceded by a theory predicting
the main effects. The experiments demonstrated beyond doubt that incoher-
ent solitons indeed exist. Yet, at the time, something quite important was
still missing: a theory! Unlike the case of coherent solitons, where the evo-
lution equation can be straightforwardly derived by adding the nonlinearity
to the paraxial equation of diffraction, the description of incoherent solitons
was far from being clear. The experiments were of course based on insight
and intuition, but then again they gave only few clues, if any, as to how one
could develop a theory. Only one thing was certain - the theory of incoherent
solitons had to be derived from first principles. Within a year, two different
theories were developed to describe incoherent solitons: the coherent density
theory [120] and the modal theory [121]. The coherent density theory is, by its
very nature, a dynamic approach that is better suited to study the evolution
dynamics of incoherent solitons, their interactions, instabilities etc, as they
occur in experimental set-ups. In this formalism, the incoherent field is de-
scribed by means of an auxiliary non-observable function from where one can
deduce the optical intensity as well as the associated correlation statistics.
The modal theory, on the other hand, by virtue of its inherent simplicity be-
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came the method of choice in terms of identifying incoherent solitons, their
range of existence and correlation properties. One year later, yet another
theory was proposed: the theory describing the propagation of the mutual
coherence [122]. Interestingly enough, even though at first sight these three
theoretical approaches seem to be dissimilar, they are in fact formally equiv-
alent to one another [123]. All describe quasi-monochromatic yet partially
spatially incoherent solitons: they explain the behavior of such entities, pro-
vide their statistical properties, and predict their behavior as they interact
with one another. As such, they became a very powerful analytical and nu-
merical tool. More recently, these theories were expanded to describe white
light solitons: solitons that are made of temporally and spatially incoherent
light [124, 125].

The pioneering experiments of Refs.[42, 43, 47] that were the first to
show the unexpected fact that random-phase solitons can exist with both
spatial and temporal incoherence, opened the way for several other impor-
tant results. These include for example, anti-dark incoherent states [126],
elliptic incoherent solitons [127, 128], coherence control using interactions
of incoherent solitons [129, 130], and more. Especially noteworthy are the
fundamental studies on modulation instability of incoherent waves and spon-
taneous pattern formation in weakly correlated system. It has been found,
theoretically and experimentally, that such weakly correlated systems indeed
exhibit modulation instability, and a uniform (homogeneous) partially inco-
herent wavefront breaks up into an array of soliton-like filaments. However,
for this to occur the nonlinearity needs to exceed a threshold value determined
by the coherence properties of the waves [131, 132, 133, 134, 135, 136]. This
fact stands in sharp contradistinction with coherent systems, for which there
is no such threshold for modulation instability (in a coherent self-focusing
system, a uniform wave always breaks up into an array of soliton-like struc-
tures). Once this threshold is exceeded, the partially incoherent uniform wave
breaks up into an array of localized structures, each behaving as an incoher-
ent soliton. These solitonic ”breakup products” interact with one another
in an incoherent fashion, exerting long-range attraction on each other. Af-
ter sufficiently large propagation distance, they aggregate and form clusters
of fine-scale structures, leaving large voids between adjacent soliton clusters
(aggregates of solitons) [137, 138]. More recent work along these veins is the
prediction of modulation instability of white light [139], along with its very
recent experimental observation [140], and the work on incoherent pattern
formation in cavities [141, 142, 143, 144].

Studies on incoherent solitons and incoherent pattern formation have es-
tablished that these are not some kind of esoteric creatures, specific to pho-
torefractives, but are in fact a general and rich new class of solitons, whose
existence is relevant to many other diverse fields beyond nonlinear optics. For
example, incoherent modulation instability effects, soliton clustering and in-
coherent pattern formation, relate to many systems in nature: from clustering
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in a cooled atomic gas to self-supported ”stripes” of electrons in semiconduc-
tors, as well as to gravitational-like effects. In fact, the underlying physics
relates to any weakly-correlated wave-system having a non-instantaneous
nonlinearity. Altogether, it is fair to say that incoherent solitons are most
probably the single most important discovery made with self-trapping effect
in photorefractive systems. It has introduced a new concept into soliton re-
search, and has many implications beyond optics, into other arenas where
random phase waves and nonlinearities coexist.

11 Applications

11.1 Passive devices

The most basic functionality afforded by a soliton in any physical system,
is the transfer of a localized energy/information bearing wave perturbation
along an otherwise dispersive propagation. For an optical spatial soliton,
this translates into the fact that far-field effects are absent, and the spatial
resolution, its phase curvature and coherence properties, and the transverse
distribution of energy, remain unaltered: a guided propagation in an otherwise
bulk and homogeneous medium, the guide itself being induced by the modes
it supports.

For photorefractive solitons, the composite nonlinearity that intervenes
allows for a series of useful attributes. For one, a photorefractive soliton
can passively guide a second beam of longer wavelength, on consequence of
the fact that whereas self-trapping is a product of nonlinearity, the index-
modulating system is only weakly wavelength dependent, and will act on an
infrared beam in much the same manner that it acts on the soliton [145, 146,
147, 148, 149, 150, 151]. Not being of nonlinear origin, this phenomenon does
not depend on the intensity of the guided signal, and, in the measure in which
the deposited charge displacement which accompanies the soliton does not
redistributed, does not even require the presence of the visible nonlinear wave.
This property can be used to integrate a material into a fiber or waveguide
device without the development of a crystal-specific technique to grow or
tailor a waveguide, the sample itself serving either as an electro-optic phase-
transducer, the waveguide not being greatly modified by the application of
an arbitrary bias for linear electro-optic response, or simply as redirecting
component.

Passive waveguiding gives us the opportunity of differentiating between a
nonlinear and a linear behavior. Consider, for example, a dark soliton, which
consists of a nondiffracting intensity notch engendered by a π phase jump.
In the very same conditions that lead to its formation, it can passively guide
a bright longer wavelength mode, even though such a photoactive mode (at
the shorter wavelength) could never self-trap in the same conditions.
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Evidently, more complicated passive devices can be demonstrated, such
as reconfigurable directional couplers based on two bright solitons formed
in close proximity, Y-junctions, along with more complex multisoliton struc-
tures and hybrid soliton-fabricated-waveguides systems [152, 153, 154, 155,
156, 157, 158]. Moreover, in conditions in which charge redistribution cannot
be avoided, a considerable advantage can be obtained by implementing the
ferroelectric fixing of the routing device [159].

11.2 Active devices

A second functionality is based on the fact that photorefractives offer all-
optical functionality even at low intensities, even though this is burdened by
slow time response [160, 161, 162, 163, 164, 165]. For example, logic operations
can be carried out simply by having two solitons interact, or by modulating
two different components of a single vector soliton. We might note that a
truly all-optical soliton device must imply a partial absorbtion, and this does
not generally spouse implementation. A slightly less ambitious alternative is
to use the all-optical operation to steer non photoactive signals.

A second form of active device is that for which soliton dynamics are
controlled externally by means of a modulation in the supporting physical
parameters. Thus for example, the output direction of propagation can be
changed by changing the bias voltage, as a consequence of self-bending [21].
Once again, whereas the signal can be delivered in a fast capacity-limited
regime, the optical response will be dominated by the photorefractive time
constants.

11.3 Electro-optic manipulation

Passive electro-optic effects have been investigated for soliton-deposited
space-charge in paraelectric samples [166]. This allows the fast capacity-
limited manipulation of optical circuitry through the sole electro-optic effect,
much in the same manner as electro-holographic technology.

In order to grasp the phenomenon, note that in a linear electro-optic
response, once a soliton has been formed through a self-trapping ∆ns, the
application of an arbitrary control external bias in combination with E0 leads
to a ∆n(Econ) ∝ (E + Econ), which simply changes the constant pedestal on
which the soliton guiding pattern induced by E is embedded. This means, for
example, that passive guiding can be achieved also for a zero applied exter-
nal field. For a paraelectric, which is characterized by a quadratic response,
∆n(Econ) ∝ (E + Econ)2 = E2 + 2EEcon + E2

con. The second mixed term al-
lows for an electro-optic distortion of the pattern, which, not implying charge
redistribution, is a purely spatially resolved electro-response. This has allowed
the demonstration of a series of beam manipulation devices, culminating in
a two-needle switching device [167] (see Fig.25).
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11.4 Nonlinear frequency conversion in waveguides induced by
photorefractive solitons

The most promising application of waveguides induced by photorefractive
solitons is nonlinear frequency conversion. The conversion efficiency in χ2

processes is proportional to the intensity of the pump beam, so it is desir-
able to work with very narrow beams. One easy way to achieve that is to
use a focused pump beam. However, in a bulk crystal, the more focused a
beam is, the faster it diffracts, and diffraction limits the frequency conver-
sion efficiency because as the interacting beams diffract, (1) their intensities
decrease, and (2) the phase-matching condition cannot be satisfied across
their entire cross section. Therefore, using waveguides for frequency conver-
sion can greatly improve the conversion efficiency. But thus far it has been
difficult to fabricate waveguides from most materials that allow for phase
matching, and two-dimensional waveguides are especially difficult to make.
Now, (2+1)D photorefractive solitons induce 2D waveguides, and almost all
photorefractives are highly efficient in χ2 frequency conversion. In waveg-
uides, phase-matching should take place among the propagation constants
of the guided modes, and is typically obtained through birefringence or pe-
riodic poling. In a fabricated waveguide, however, the structure is fixed, so
tuning techniques rely on varying the temperature, or on lateral translation
in structures with several periods of poling parallel to one other. But waveg-
uides induced by photorefractive solitons offer much flexibility because their
waveguide structure and propagation axis (with respect to the crystalline
axes) can be modified at will and in real time. Working with photorefractive
solitons, one can achieve wavelength tunability while avoiding diffraction by
simply rotating the crystal and launching a soliton in the new direction. One
can also fine-tune the frequency conversion process by changing the propaga-
tion constants of the guided modes through varying the intensity ratio and
external voltage, allowing tuning with no mechanical movements.

The first step in the direction of nonlinear frequency conversion in waveg-
uides induced by photorefractive solitons was the demonstration of efficient
second-harmonic generation [168, 169, 170]. The experiment have shown that
the conversion efficiency can be considerably increased [168], and high tun-
ability can be obtained by rotating the crystal [169]. However, a much more
important scenario occurs in a soliton-based optical parametric oscillator
(OPO). In an OPO, the threshold pump power is dependent on the signal
gain per pass through the crystal. To lower the threshold, one has to in-
crease the signal gain per pass. A waveguide that confines the pump beam
as well as the signal and idler in a small area is one very effective way to
achieve this. Consider a Gaussian beam at the pump frequency launched
into a nonlinear crystal and assume that phase matching is satisfied at the
waist, located at the input surface. The threshold pump power is propor-
tional to [z0 arctan2(L/z0) + ln2(1 + L2/z2

0)/4]−1 , where z0 is the Rayleigh
(diffraction) length of the beam and L is the crystal length. For a given L,
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there exists an optimum beam size for minimum threshold pump power, when
z0 = L/2.84. However, if a waveguide is used to keep all beams at the same
widths throughout propagation in the crystal, the threshold is simply pro-
portional to z0/L2, which continues to decrease as we focus the beam more.
The minimum threshold is determined by the smallest size of the waveguide
that can be made. To estimate the improvement, consider a focused Gaussian
beam with a minimum beam waist of 21 mm and a 15 mm long crystal. An
OPO constructed in a waveguide has a threshold pump power 60 percent
lower than that of an OPO with the same beam waist in bulk. Therefore,
in a waveguide OPO the signal gain per pass can be considerably improved,
and the threshold pump power can be substantially lowered for the same cav-
ity loss. This generic idea was recently demonstrated with a doubly-resonant
optical parametric oscillator in a waveguide induced by a photorefractive soli-
ton [171]. The OPO threshold was considerably lowered by constructing it
within a soliton-induced waveguide. This technique should work even bet-
ter with singly resonant OPOs and it can substantially reduce the threshold
pump power when very narrow solitons are employed. For example, using a
soliton beam with a beam waist of 8 mm and a 15 mm long crystal, the OPO
threshold pump could be reduced to only 3.5 percent of that for an OPO in
the same nonlinear medium, using the same mirrors but without the soliton.

Fig. 25. Electro-optic switching, from [167]

12 New frontiers in photorefractive solitons and
concluding remarks

As we hope transpires from the brief review, there is still much to be under-
stood as to the mechanisms underlying spatial photorefractive self-trapping,
from the formation of 2+1D solitons to quasi-steady-state solitons, from dark
incoherent solitons to spontaneous self-trapping. The field, however, is in
constant expansion, and we cannot refrain from mentioning the important
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Fig. 26. Second harmonic generation in photorefractive solitons, from [168].

Fig. 27. Second harmonic conversion efficiency increase mediated by spatial soli-
tons, from [168]

achievements in the field of soliton lattices and discrete soliton observation
obtained in photorefractive SBN [172, 173, 174, 175, 176, 177], and in the
trapping of more exotic excitations such as rings [178].

Although we have attempted to give a detailed account of all aspects
of photorefractive self-trapping, the field has undergone such a rapid and
extensive evolution that we can hardly guarantee that all contributions have
been cited and described. Perhaps this is yet another accomplishment of
photorefraction, that is, having given to the soliton science community a
powerful and accessible tool with which to further its research and develop
new and possibly useful scientific and practical tools.

13 Dedication

Moti Segev would like to dedicate this Chapter to his friend Galit Staier, who
was critically wounded in the murderous Palestinian suicide attack on Octo-
ber 4, 2003, in the Maxim restaurant in Haifa, Israel. In that suicide bomb a
Palestinian woman blew herself up killing 21 civilians. Galit has has lost her
11-year old son Assaf Staier, her father Ze’ev Almog (71), her mother Ruth
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Almog (70), her brother Moshe (43), and his son Tomer Almog (9). Moshe’s
other son, Oran Almog (11), was critically wounded, while Moshe’s wife, Orly
Almog, and their daughter Adi Almog (4), were moderately wounded as well.
Galit and the survivors of the Staier-Almog family are now slowly recovering.
We all hope that Galit will fully recover soon, for her husband (Moti’s friend)
Ofer Staier, for their son Omri, and for her family and friends.

The Authors join in expressing the hope that the sacrifice of the Staier-
Almog family lighten the way to a real peace, free of horrible actions against
humanity, such as suicide bombings.
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