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Emergence of linear wave segments and predictable traits in
saturated nonlinear media
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We find the key behind the existence traits of asymptotic saturated nonlinear optical solitons in the emergence
of linear wave segments. These traits, produced by the progressive relegation of nonlinear dynamics to wave
tails, allow a direct and versatile analytical prediction of self-trapping existence conditions and simple soliton
scaling laws, which we confirm experimentally in saturated-Kerr self-trapping observed in photorefractives.
This approach provides the means to correctly evaluate beam tails in the saturated regime, which is instru-
mental in the prediction of soliton interaction forces. © 2003 Optical Society of America
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In contrast with classical soliton theory, optical spa-
tial solitons do not generally go hand in hand with
integrability,1 – 3 as the larger portion of observed
nonlinear waves has no explicit analytical description.
Whereas this fact does not invalidate the conceptually
useful picture of solitonlike mechanics, which finds its
sole validity in physical behavior, it does considerably
hamper our ability to predict phenomenology. For
example, to experimentally generate a self-trapped
beam, whether it be to study some peculiar effect or
to develop some useful device, we are forced to rely on
numerical integration to f ind the appropriate launch
parameters of the wave that most resemble those of the
soliton wave, i.e., the so-called existence conditions,
which normally translate into a (mathematically un-
known) relationship between the wave intensity and
width.4 – 6 Moreover, we are not able to formulate scal-
ing laws, which are the clues to understanding soliton
self-similarity.7 Finally, and perhaps most impor-
tantly, we have no explicit means of evaluating inter-
action potentials through wave–tail overlap integrals.

The major source of nonintegrability and absence of
closed-form solutions for optical spatial solitons is as-
sociated with saturation, and the most general embodi-
ment of saturation is the so-called saturated Kerr-like
nonlinearity. This nonlinearity is the effective model
that describes screening slab solitons in photorefrac-
tive crystals,4 – 6 one of the more studied breeds of
spatial self-trapped beams, and, for example, spatial
solitons in atomic vapor8 and in semiconductor gain
media.9

Yet, ref lecting on known phenomenology, and in par-
ticular, on the vast quantity of experiments associated
with photorefractive crystals,6,10,11 we are faced with
solitons that have a consistently regular scaling of soli-
ton intensity and width,7 in the very asymptotic regime
where saturation does not allow for closed-form solu-
tions. In this Letter we find what we believe to be the
fundamental key to the interpretation and prediction of
these asymptotic traits, formulating an analytical de-
scription of soliton existence curves, scaling laws, and
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tail wave segments whose validity rests on the very no-
tion of saturated response.

In contrast with all previous theoretical descrip-
tions,6,7,12 the heart of our approach is to address the
physical implications of saturation. Saturation allows
the separation of the nonlinear problem into two dis-
tinct regimes: a highly nonlinear and a purely linear
one. We address different portions of the same non-
linear optical wave in the transverse plane differently,
an approach that proves meaningful when longitudi-
nal dynamics are absent, as for solitons. The scheme
that we present, which is based on the matching of
linear and nonlinear beam solutions of the correct
physical description of the trapping mechanism, is not
characterized by any simplifying hypothesis, such as
the introduction of an effective threshold linearity,13

an a posteriori fitting procedure, or a Taylor expansion
of the saturated nonlinearity,7 that does not allow a
direct prediction of asymptotics. Our scheme mani-
fests a striking predictive power that we discuss here.

Nonlinear saturated beam dynamics can be gener-
ally associated with an intensity-dependent index of
refraction change, Dn�I �, that saturates, i.e., Dn�I � �
Dn` (independently of I ) for a strong enough optical in-
tensity I ¿ Is, where Is is a characteristic saturation
intensity. For beam peak intensity I0 ¿ Is, the beam
dynamics can be separated into two parts. One is in
proximity to the beam peak, where the nonlinearity is
strongly saturated and the index of refraction is not af-
fected by the shape of the optical beam, taking on the
limiting value Dn`. There being no self-action, in this
region beam dynamics are linear. The other is located
at the edges of the beam, where saturation is progres-
sively less pronounced and the tails suffer highly non-
linear dynamics. Saturation asymptotically relegates
beam nonlinear dynamics to the beam tails.

Translation of this picture into a predictive
tool starts from the description of saturated soli-
tons in a scalar 1 1 1-dimensional reduction of
the nonlinear parabolic wave equation for the
slowly varying envelope A�x, z� of the optical field,
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Eopt�x, z, t� � A�x, z� exp�ikz 2 ivt�, where x is the
transverse coordinate, z is the longitudinal beam
propagation coordinate, k � 2pn�l is the optical wave
vector of the l wavelength field, v � 2pc�nl, and n
is the unperturbed index of refraction of the medium.
Nonlinearity is mediated by an index modulation
Dn that is affected by the optical beam through the
intensity distribution I �x, z� � jA�x, z�j2. By imposing
the condition that the optical f ield gives rise to a
solitonic propagation of the type A�x, z� �

p
Is eiGzu�j�,

where G is the soliton eigenvalue, and j � x�d,
with d � �2k2jDn�0�j�n�21�2, we f ind that the soliton
supporting nonlinear equation becomes

u00�j� � 2du�j� 1 f �juj2�u�j� , (1)

where d � 2G��kDn�0��n� is associated with the
boundary conditions4 and Dn�I ��Dn�0� � f �juj2�. In
the hypothesis that the nonlinearity is local, Eq. (1)
has a first integral that allows the direct expression
of d as a function of boundary conditions. For a
fundamental bright soliton, u�0� � u0, u0�0� � 0,
u�`� � u0�`� � u00�`� � 0, and u�j� can be taken to

be real. As a consequence d � �1�u2
0�

Ru20
0 f �u2�d�u2�.

This equation suggests an analytical expression, once
f is a known integrable function that describes the
nonlinearity.4 The basis for this explicit expression
for d depends both on the nontrivial explicit for-
mulation of the model and on the assumption that
fundamental bright solitons exist. As a consequence
of this, the expression for d cannot serve as a predic-
tion of solitons in themselves but only as a subset of
asymptotic traits.

The scaling of Eq. (1) in the saturated regime of
u0 ¿ 1 [i.e., I �0� ¿ Is] for the portion of the wave in
proximity to the peak, where the more general condi-
tion u�j� ¿ 1 holds, are such that f �u2�max�d ! 0 for
the general case of f �u2� � 1��1 1 u2�m (m � 1, 2, . . .).
In this regime we obtain the simple yet remarkable
result that for the saturated portion of the nonlinear
response Eq. (1) asymptotically leads to the harmonic
oscillator (d . 0)

u00�j� 1 du�j� � 0 . (2)

Note that this reduction is valid only once z dynamics
have been eliminated, something that is intrinsi-
cally incompatible with localized optical waves in
linear propagation. Therefore, the very emergence of
the harmonic wave is a product of nonlinearity, as
transpires, for example, if one notes that the elastic
constant associated with d results from the partial
integration of the fully nonlinear equation (1).

The main implication of Eq. (2) is that, for u�j� to
be compatible with bright soliton boundary conditions,
it must be of the form u�j� � u0 cos�d1�2j�. The ex-
istence conditions are defined as the beam intensity
FWHM, Dj, as a function of the root of the beam peak
intensity, u0. In conditions of strong saturation, when
both I �0� ¿ Is and I �0��2¿ Is, the portion of the beam
that is harmonic extends beyond the half-width, and
thus the existence conditions can be directly evaluated,
the result being that
Dj � �p�2�d21�2. (3)

For Kerr-saturated nonlinearities of the type f �u2� �
1��1 1 u2�m, with m $ 2, d � �m 2 1�21u22

0 , and thus
Eq. (3) gives asymptotically Dj � �p�2� �m 2 1�1�2u0.
The existence curve is linear, thus greatly increasing
the predictive power of the whole scheme.

For the fundamental Kerr-saturated case f �u2� �
1��1 1 u2�, i.e., m � 1, d � u22

0 ln�u2
0 1 1� and Eq. (3)

gives Dj � �p�2�u0�ln�u2
0 1 1��21�2, which is quasi-

linear for a given set of values of u0, given the loga-
rithmic nature of the nonlinear distortion. However,
in this case, convergence from Eq. (1) to Eq. (2) is
logarithmic, and for all practical purposes (i.e., for
values of u0 up to 102) f �u2�max�d does not converge to
zero. It is therefore necessary to directly impose the
known boundary condition u00�0� � 2du0 1 f �u2

0�u0
onto the harmonic-wave segment from Eq. (1). This
amounts to taking the saturated value f �u2

0�u for
f �u2�u in Eq. (1) instead of wholly neglecting it and
clearly requires no knowledge of u�j�. The resulting
corrected elastic constant in Eq. (2) is thus given by
d � u22

0 �ln�u2
0 1 1� 2 u2

0��1 1 u2
0��. The very same

boundary matching can be imposed in the m $ 2 case,
where, however, convergence is much faster, giving
a corrected d � u2

0�1 1 u2
0�22 instead of d � u22

0 (see
curve and caption of Fig. 1) for m � 2.

The scaling laws that allow for self-similarity
and fractals are associated with the harmonic-wave
segments. In particular, for the m $ 2 case [for
which u�j� � u0 cos�u21

0 j��, the segments obey the self-
similar relationship A�x, z� ! q21A�qx,q2z�. In the
m � 1 case {for which u�j� � u0 cos�u21

0 ln�u2
0 1 1�1�2j�},

a rescaling symmetry can be found for only a limited
range of scales (where d ~ u2

0 is approximately valid),
giving the same A�x, z� ! q21A�qx,q2z�.

Wave segmentation can be used to predict beam tail
structure, which is instrumental in the evaluation
of long-range interaction potentials through wave
overlap integrals.14,15 In particular, one can predict
when the exponentially decaying regime will su-
persede the harmonic segment, thus evaluating the

Fig. 1. Segmented wave harmonic theory (solid line and
curve) of centrosymmetric screening solitons, numerical in-
tegration of Eq. (1) (plus symbols), and experiments in a
sample of potassium lithium tantalate niobate (circles and
squares). The line is the basic segmentation prediction
Dj � �p�2�u0; the curve is the prediction D that adheres
more closely to the result of Dj � �p�2� �1 1 u2

0��u0 (see
text). There are no free parameters.
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Fig. 2. Segmented wave harmonic theory (curves) of
(a) conventional screening solitons and (b) high-intensity
solitons. Plus symbols, numerical integration of Eq. (1);
squares, experiments in strontium barium niobate.10,17

In (a) the bottom curve is the basic segmentation pre-
diction Dj � �p�2�u0�ln�u2

0 1 1��21�2; the top curve is
the more adherent prediction Dj � �p�2�u0�ln�u2

0 1 1� 2

u2
0��1 1 u2

0��21�2. There are no free parameters.

effective transverse shift in the beam tail j that is
due to saturation. The unsaturated tail forms at the
edges of the beam where u ø 1, i.e., in proximity to
the region where d1�2j � p�2, giving j � d21�2p�2.
The tails, which obey the unsaturated form of Eq. (1)
u00 � 2�d 2 1�u 2 mu3, are therefore described by u �
�2�1 2 d��m�1�2 sech��1 2 d�1�2�j 2 j��. Comparison
with numerical saturated waveforms confirms this
prediction, passing, for example, in the m � 2 case,
from an error of Dj�j � 0.05 at u0 � 10 to less than
0.005 at u0 � 100.

We pit our asymptotic theory against screening
solitons in potassium lithium tantalate niobate, which
are described by a saturated Kerr response with
m � 2, when dielectric nonlinearity is absent.12,16 In
this case we should obtain Dj � �p�2�u0. Our com-
parison is twofold: the first, a confirmation of the
mathematical validity of the wave-segmentation ap-
proach, is a comparison of our predictions with those
obtained through numerical integration of Eq. (1) with
f �u2� � 1��1 1 u2�2. The results are shown in Fig. 1.
As can be seen, the convergence is strikingly accurate.
We obtain a more profound comparison by pitting our
predictions against experiments. To have a simple
saturated Kerr nonlinearity we heated our samples of
potassium lithium tantalate niobate above the Curie
temperature, Tc, to a region in which dielectric non-
linearity11,16 has a negligible effect. In our copper-
and vanadium-doped 2.6 mm 3 1.8 mm 3 6.4�z� mm
sample, with Tc � 18 ±C, dielectric nonlinearity is
absent for values of T $ 30 ±C. To be sure that no
higher-order effects were present, we measured the
soliton existence points for two different values of
T [T1 � 30 ±C (squares) and T2 � 35 ±C (circles) in
Fig. 1]. As shown in Fig. 1, a single consistent linear
signature is observed, consistent both with numerical
integration and, most importantly, with our harmonic
segmentation theory, which has no free f itting parame-
ters. The uncertainty in the data is due to the preci-
sion in the evaluation of the correct value of voltage
V applied in the x direction on the crystal sample
electrodes for which self-trapping is observed. The
results are to our knowledge the f irst experimental
indication of an accessible fractal-supporting soliton
system (m � 2).
Next, we pit our segmented wave theory against
numerical and experimental results relative to the
lowest-order saturated Kerr nonlinearity associated
with a value of m � 1. We consider experiments with
strontium barium niobate reported, for example, in
Ref. 17, and again compare our analytical predictions
in Fig. 2(a).18

Solitons described by a weakly saturated Kerr model
with m � 1�2 have also been reported in photorefrac-
tives17 in the high-beam-intensity regime. For these
solitons saturation is so weak that our general treat-
ment cannot be applied. However, wave segmentation
indicates that Eq. (1) converges to u00 1 �2�u0�u 2 1 �
0, which leads to an asymptotic Dj �

p
2 arccos�

p
2 2

1�u1�2
0 behavior, in its most basic formulation [see com-

parison of calculations and experiments in Fig. 2(b)].
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