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We relate on a series of optical nonlinear propagation phenomena, mediated by photore-
fraction, present in ferroelectric crystals heated above the Curie point, in proximity of the
critical regime. In particular, we discuss centrosymmetric screening solitons, diffusion-
driven anisotropic nonlinear diffraction, ellipticity locking, diffusion-driven solitons, and
spatial beam head-on collisions.

1. Introduction

According to our present understanding, robust, nundistorted, propagation of highly
confined perturbations in dispersive continuos media, otherwise termed solitons or
solitary waves, develop from a nonlinear host-perturbation interaction that ulti-
mately compensates dispersion.! In Optics, solitons are generally identified with
propagation of ultrashort pulses that do not suffer dispersion, known as tempo-
ral solitons,? and spatially confined optical beams that do not undergo diffraction,
known as spatial solitons.® Limiting our discussion to this last type of phenomena,
we can intuitively imagine the formation of a spatial soliton as due to a self-induced
waveguide, engendered, in the host medium, by a light-induced modulation of the
index of refraction, mediated by some more or less complicated light-matter inter-
action. Spatial optical solitons have been observed in Kerr-like media, in quadratic
media, and in photorefractives.? In particular, photorefractive crystals have re-
cently attracted much attention due to the relative “ease” of observation, in these
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materials, of steady-state spatial solitons, in a simple electro-optic configuration:
the “screening” nonlinearity.? The resulting photorefractive self-trapped beams, en-
gendered through the local screening of an external electric field via light-induced
charges, have been employed in numerous basic configurations, allowing the exper-
imental analysis of fundamental soliton properties and behaviors, and have rapidly
extended the scope of nonlinear optical propagation to entirely new phenomena
and circumstances, Thus, screening solitons have permitted the detection of stable
two-dimensional soliton particles,® of soliton-soliton spiralling,® and of self-trapping
of incoherent light beams.”

Since the discovery of spatial self-trapping in photorefractive media,® photore-
fractive solitons have been studied, theoretically and experimentally, in crystals in
a stable ferroelectric polar phase.* In this phase, ferroelectrics manifest a strong
spontaneous polarization along a particular axis (uniaxial structure) known as the
optical axis, and the resulting electro-optic response is referred to as the linear
electro-optic effect, characterized by a linear dependence of the local crystal index
of refraction on the internal electric field.

Photorefraction, however, is not peculiar to this noncentrosymmetric phase.?
Ferroelectrics are characterized by a number of different crystal states. The highest
symimetry phase, in which all traces of spontaneous polarization disappear, generally
referred to as the paraelectric phase, is characterized by a centrosymmetric crystal
lattice and by a guadratic electro-optic response. Photorefraction, in this phase, is
mediated by a light-induced index modulation that is proportional to the square of
the induced internal electric field. Clearly, in the absence of spontaneous polariza-
tion, the electro-optic susceptibility is strongly diminished, and is similar to electro-
striction (present in many nonferroelectric materials). Operating, on the other hand,
in proximity of the polar phase-transition, at temperatures slightly above the Curie
temperature T, at which spontaneous polarization emerges, strongly enhances the
low-frequency material response. Maintaining the crystal close to the transition
point, on the dielectric anomaly, has actually allowed the observation of signifi-
cant photorefractive effects.'” Pioneering experiments, however, were hampered by
one basic complication: the not easily accessible values of 7. Initial paraelectric
experiments were carried in KTN and KLTN at low values of T..!' Recently, on
the other hand, a particular composition of KLTN has allowed the realization of
high quality bulk samples with room temperature ferroelectric-paraelectric phase
transition.'® This achievement has stimulated a renewed interest in the field, and
opened up a variety of novel nonlinear optical propagation phienomena that are here
discussed. In particular, photorefractive paraelectrics have been shown to support
spatial centrosymmetric screening solitons,'? 14 that are qualitatively equivalent to
their polar analogues. This means that most of the experiments carried out in the
polar pliase can be reproduced, mutatis mutandis, directly in the near-transition
nonpolar phase. We shall here describe the experimental observation of these soli-
tons both in the 1 4+ 1D (one transverse and one propagation dimension)' and
2 + 1D cases. The story, however, does not end in this discovery. Polar crystals
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support, in the steady-state, screening solitons? and photovoltaic solitons.'® Recent
investigation has shown that the nonpolar phase supports a somewhat different,
varied, soliton phenomenology, such as for example, charge diffusion-driven nonlin-
ear phenomena.'®!” The main difference between the two regimes lies in the fact
that the near-transition nonpolar regime brings into action a series of nonlinear
material processes not relevant in the stable noncentrosymmetric phase, through
the progressive enhancement of light-induced material changes in proximity of the
dielectric anomaly. The strong influence of charge diffusion, the so-called photofer-
roelectric effect, static material nonlinear polarization, hysteresis ete. all can come
to play a significant role near the transition, not to mention thermal effects and do-
main clustering and enucleation.'® To date, there is strong evidence that these are
present, but explicit investigation has only been carried out for diffusion-driven phe-
nomena. In particular, we describe how the basic photorefractive model describes
peculiar optical self-action, such as intensity independent self-focusing, and two-
dimensional anisotropic effects, such as beam aspect-ratio locking, We furthermore
discuss the prediction of an entirely new class of spatial solitons, both in 1+ 1D and
2+ 1D cases, with very peculiar and novel characteristics, known as diffusion-driven
solitons, Diffusion-driven self-trapping permits, finally, the investigation of nonlin-
ear phenomena in head-on collisions between confined counterpropagating beams,
and we here describe a new approach to the theoretical description of such con-
figurations, that are inherently characterized by strong nonlocality and nonlinear
feedback.

In Sec. 2, centrosymmetric screening solitons are discussed, along with evidence
of nonlinear material effects not contemplated in the simplified local quadratic
screening model. In Sec. 3, the theoretical photorefractive model of beam propaga-
tion in a nonpolar ferroelectric in proximity of T, is described and solved, leading
to nonlinear beam diffraction and diffusion-driven solitons. In Sec. 4, experimental
evidence of diffusion-driven self-focusing is described, along with the observation
of beam aspect-ratio locking. Both phenomena are directly interpreted by means
of the diffusion-based model described in Sec. 3. In Sec. 5, head-on collisions of
confined optical beams is discussed by means of a novel feedback approach.

2. Centrosymmetric Screening Solitons

Centrosymmetric screening solitons are supported by the same basic physical mech-
anism that gives rise to conventional noncentrosymmetric screening solitons, al-
though mediated by the quadratic, rather than the linear, electro-optic effect. The
resulting phenomenologies are quite similar, although direct comparison between
theory and experiment reveals that nonlinear near-transition material mechanisms,
not contemplated in the screening interaction, are playing an important, albeit as
yet not clarified, role.

The essential process supporting screening solitons can be summarized, in the
1 -++ 1D case, as follows (refer to Fig. 1): a highly confined optical beam is focused
onto the input facet of a zero-cut photorefractive crystal and propagates along a




4 E. DelRe et al.

Fig. 1. Photorefractive screening mechanism.

crystal axis (for example, z). As the beam propagates in the material, it diffracts in
the confined direction (say, the x dimension). The crystal, in itself transparent to
the optical field (typically, the gap energy corresponds to optical wavelengths A <
300 nm), is characterized by a small amount of impurities that act as photosensitive
donor sites. The beam excites conduction charges that are free to diffuse or drift
in an external field. Neglecting, for the moment, charge diffusion (considered in
the next sections), the application of an external field to the sample, parallel to
the x axis, along which the beam suffers diffraction, displaces the charges so as to
screen the resulting field in the illuminated region. This local modulation of electric
field causes a corresponding local modulation of the index of refraction through the
electro-optic response. When this modulation is such as to compensate diffraction,
the self-induced lensing leads to self-focusing, and in particular conditions, to self-
trapping.'®

In the centrosymmetric case, the electro-optic change in index of refraction is
proportional to the square of the polarization,?”

(1/An)y = gk PP, (2.1)

where g4 is the quadratic electro-optic tensor. An is expressed, in a scalar electro-
optic configuration, by

An = —(1/2n3gered (e, — 1)2E2, (2.2)

where E is the internal electric field, g.g is the effective electro-optic coeflicient,
n is the crystal background index of refraction, £ = £42, is the crystal dielectric
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constant, and the material response is taken to be linear,
P =gg(er — 1)E. (2.3)

Typically, values of An obtained for reasonably accessible values of £ (< 5 KV/cm)
are far too low to support self-induced waveguiding {An has to be of the order of
10~* to support a 10 um optical soliton beam). Near the Curie point, however,
the relative dielectric constant can take on values on the order of £, =~ 10%, and
self-trapping becomes feasible for relatively low applied voltages.

For materials with g > 0, bright centrosymmetric 1+ 1D screening solitons can
be shown to obey the local, saturated, and nonintegrable nonlinear wave equation'?

d*u€) [ 1 1
dez 1+uf  (L+u2(€))?

where u(£) is the soliton amplitude normalized to the square root of the sum of
background and dark irradiances, £ = x/d is the transverse coordinate normalized to
the characteristic nonlinear length scale d = (2kb)~1/2, with b = (k/n)(1/2)n>geqs?
(e, — D2(V/L)?, k = 2mn/X, A is the vacuum wavelength, V the applied voltage,
and L is the width of the erystal between the opposite electrode faces (see Figs. 1
and 3).

Equation (2.4) does not have explicit analytical solutions. It does however,
have non-analytical solutions in the form of self-trapped optical pulses. The ac-
tual solution can only be found numerically, and the resulting beam shape, ana-
lyzed elsewhere,?! is somewhat similar to a Gaussian pulse. Numerical solutions
of Eq. (24) form a set of parameter values in the (ug, AE) plane, where u3 is the
ratio between the peak pulse intensity and the background illumination (intensity
ratio), and A£ is the normalized full-width-half-maximum (FWHM) of the pulse.
The subspace corresponding to these soliton existence points is generally referred to
as the “soliton existence curve.” Equation (2.4), like its ferroelectric counterpart,
tends to become a Kerr-like nonlinearity in the wg — 0 limit.

We have previously underlined the critical importance of erystal temperature in
centrosymmetric nonlinear phenomena, and in the simple screening model, proximi-
ty to transition only influences the value of the dielectric constant €. In general, for
most ferroelectrics, the static dielectric constant obeys, in the linear centrosym-
metric phase (i.e., when Eq. (2.3) is valid), the Curic-Weiss phenomenological
relationship

u(€), (24)

C
T-Tp'
where C' and Ty are phenomenological constants. We have observed 1 + 1D soli-
tons in a sample of bulk KLTN (potassium-lithium-tantalate-niobate), doped with
Copper and Vanadium impurities. Measured values of low frequency (< 10 Kc/s)
£y, through a standard capacitance measurement, are reported, for this particu-
lar crystal, as a function of temperature in Fig. 2. The crystal manifests a first-

order displacive ferroelectric-paraelectric phase transition at 7. =~ 12°C, and has
C = 1.3 x 10° (°C) and Ty = 6.2°C.

&

P

(2.5)
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Fig. 2. Measured values of relative dielectric constant versus temperature for the sample of KLTN.
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The experimental apparatus is shown in Fig. 3. A cw argon-ion laser beam is
split into orthogonal polarizations by a polarizing beam splitter. The transmitted
beam, polarized parallel to the plane (2z-axis) of the figure, is focused by a cylindrical
lens onto the input face of the KLTN sample, with its narrow direction parallel to
z. The 3.7 x 4.6 x 2.4 mm (in the z, y, 2 directions, where z is the propagation axis)
crystal is kept at a constant temperature T by a current controlled Peltier junction.
The geg for the x polarized beam, for an applied voltage V' along the = axis, has a
measured value of geg 2 0.12 m? €72, and n = 2.4. Finally, the input and output
crystal faces are imaged onto a CCD camera. The y polarized beam is used as the
background artificial illumination.

Typical experimental results are shown in Fig. 4: a9 um FWHM 1+ 1D Gaussian
beam diffracts to 29 pm with V = 0. For V = 2 KV, T = 21°C, and uf = 2.9, the
beam self-traps, and no diffraction is observed.

In Fig. 5 we plot experimental existence points against the numerical theoreti-
cal existence curve. From this comparison to the simple screening theory two main
things are evidenced. First of all, there is good gualitative agreement. This in con-
trast to the extreme simplicity of the screening model. Actual quantitative agree-
ment is not demonstrated, as happens for all experiments with screening solitons in
the ferroelectric phase.!® The second, and perhaps more interesting observation, is
that the existence curve, for two different crystal temperatures, do not agree. This
last circumstance is believed to be due to the emergence of temperature dependent
processes, such as local electric field-induced £, changes, that indicate the intrinsic
limitations of the screening model, when in proximity of the transition.??

Amongst the many interesting aspects of spatial soliton physics connected to
photorefractives, the existence of circular-symmetric self-trapped 241D beams is the
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Fig. 4. Typical results for 1 + 1D screening solitons.
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Fig. 5. Experimental soliton existence points compared to theory.

most debated.®?*25 Experiments in polar SBN (strontium-barium-niobate) have
demonstrated the existence of stable circular screening solitons, although partial
treatments of the full 2+ 1D screening model, not explicitly tractable, unlike the
1+ ID case, seem to suggest that the strong anisotropy of the system could not
possibly support such pulses. The actual solution of the dilemma is far from being
solved, although recent investigations seem to identify in the influence of nonlocal
components of the photorefractive interaction, a possible answer,?426

Nonpolar KLTN supports 2 + 1D circular-symmetric centrosymmetric screening
solitons, like SBN. Experiments have been carried out with the same apparatus
illustrated in Fig. 3, with the cylindrical lens substituted with a spherical one. The
sample of KLTN used was similar to the one previously described, except that it was
longer (in the propagation direction), being 2.6 x 1.8 x 6.4 mm (z,y, z directions),
and thus allowed a more dramatic self-trapping phenomenology.

Typical experimental results are shown in Fig. 6, where an approximately cir-
cular-symmetric 7 pm intensity FWHM needle diffracts to 90 pgm after propagating
the entire 6.4 mm length of the sample. At T'= 29°C (T, = 19°C for this crystal)
a voltage V' = 1.15 KV is able to form a self-trapped 2 + 1D spatial soliton with
u3 = 156. The final trapped beam manifests a very slight anisotropy.

Although no theory is available to compare experimental 2 + 1D results, we
are able to verify experimentally the presence of a 2 4+ 1D soliton existence curve,
illnstrated in Fig. 7.
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3. Analytic Description of Nonlinear Propagation in Unbiased
Centro-Symmetric Photorefractive Media

We have previously discussed how the spatial structure of optical beams propagating
in photorefractive crystals gives rise, through the process of photo-ionization of
the donors present in the crystal, to an inhomogeneous spatin! seneration of free
charges. In absence of an external field, these are redistributed by thermal diffusion
and produce a space-charge separation and an electric field E (space-charge field)
associated with this separation. The static field E modifies, through the Pockels’
effect, the refractive index of the crystal. In order to determine the behavior of
an optical beam propagating in a photorefractive erystal, one has first to express
the space-charge field in terms of the optical intensity I and then, after connecting,
through the Pockels' effect, the refractive index variation to the space-charge field,
to solve the associated wave equation. Some drastic approximations (see, e.g. the
cases of two-wave mixing and screening solitons) are in general required before
arriving at some manageable wave equation (see, e.g. Ref. 27). Luckily, our specific
problem requires only minor approximations and it is described by a remarkably
simple wave equation, which admits of a wide class of analytic solutions.

We first derive the relationship between the space-charge field E and the optical
intensity I = |Eq,[%, where Eop, = Alz,y,z)exp (ikz — iwt) + c.c. is the high-
frequency optical field, k = nw/e its wave-number, w its frequency and n the linear
refractive index of the medium (a scalar quantity, since we are dealing with cen-
trosymmetric crystals) at the frequency w. This is done by solving the differential
equation relating E to I. This equation can be found in the frame of the so-called
Kuchtarev model®® and reads®™%°

a—-V-Y
—Q +V(—+V_YQ)]=U- (3.1)

V-

d* di

In Eq. (3.1), a = (Np — N4)/N4 (where Ny and Np represent, respectively,
the donor and acceptors density present in the dark inside the crystal) is typi-
cally much larger than one, Y = E/E; (Ey = (KgT/qfp) being the so-called
diffusion field), V = (8/8¢,8/dn, d/3¢) (with (£,7,C) = (z/€p,y/Ep,z/Ep)) and
{p = (sKpT/q*N4)'/? is the Debye length (¢ being the low-frequency dielectric
constant of the crystal). Besides, we have defined Q = 1 + |u|?, where |u[? = I/I,
and [ is the intensity associated with the dark conductivity of the crystal and a
possible background illumination present in the crystal.

As a first approximation, we neglect in Eq. (3.1) the term V.Y with respect to
one (and, e fortior:, with respect to a), thus getting

V- [QY +VQ]=0. (3.2)

The solution of this equation, consistent with the boundary condition I = 0 on the
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transverse faces of the crystal, reads

vQ
0
The approximation V - Y < 1 has now to be checked a posteriori using Eq. (3.3).
It is easy to see that it amounts to assuming (£p/#)|ul?/(1 + |u|?) < 1, where ¢
represents a typical scale of variation of the optical intensity I.

Having related, by means of Eq. (3.3), E = EyY with the intensity I, we
recall the expression of the refractive index change associated, through the Pockels’
effect, with the presence of a given electrostatic field E. Although, as discussed in
Sec. 2, for near-transition operation, the main physical quantity of interest is the
index modulation induced by a given polarization P, the quadratic Pockels’ effect
is generally introduced directly as a function of E.>* More precisely, if z,y, z are
chosen along the principal axes of the crystal, its dielectric tensor £;; is given by

Y=- (3.3)

£ij = €012 (85 — WTijkm Bk Bm), (1,4 = 7,9, 2) (3.4)

where the tensor ri;uy, is responsible for the quadratic Pockels’ effect.
The final step is to consider the parabolic wave equation which describes optical
propagation in the paraxial approximation, i.e.,

a1 . k
('za kS ﬁV‘i) Ai(ri,2z)+ ;AnjjAj(rJ_,z) =10, (3.5)
wherer| = (z,y) and V2 = (8%/02%+8%/0y?). Recalling Eqgs. (3.3) and (3.4) and
the definition of diffusion field E4, Eq. (3.5) takes the form

d 2 n? 2
(;a + QV ) ?(KBT/Q) Tiskea ( InQ ]nQ) ;=0. (3.6)

As mentioned, since the material response in the near-transition regime is connected
to the induced polarization at a given temperature, in order to highlight the physics
at the basis of the process, the nonlinear term in Eq. (3.6) can be rewritten in a
slightly different form by recalling that the Pockels’ effect is induced by the station-
ary polarization P (see Eq. (2.1)) and thus depends on the low-frequency dielectric
constant . When Eq. (2.2) is valid, Eq. (3.6) can be recast in the form

( 3 + V2 ) A; — ﬁ(KBT/q)zag(sr - l)2gijkm ( 2 an ln Q)
a: | 2%k 2

(3.?)
Note that while far from the phase transition the tensor rijkm represents a conve-
nient electro-optic quantity since it relates directly the electric field to the refractive
index change, close to the phase transition it becomes strongly temperature depen-
dent; conversely, the electro-optic tensor gijim is approximately constant with the
temperature.
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Equation (3.7) can assume a scalar form if only two relevant electro-optic coef-
ficients, that is gupze = g1 > 0 and ggzyy = g12 > 0, are nonzero. In this case,
a linearly x-polarized input field remains z-polarized and its amplitude obeys the
scalar wave-equation

N T dlul2/6X\? alulz/aY \*\
(zaZ+VL)u+(71( w11 + 2 w1 u=0, (3.8)
where u = A, /(I;)"/2, (X, Y) = 2Y2(kx, ky), Z = kz, V2 = 8%/8X2+8%/8Y? and
n = —k*n*ef(e, — 1)2g11(KBT/q)?, 72 = —k*n’ej(e, — 1)2012(KpT/q)*.
1If we neglect I, with respect to the peak intensity Iy, that is neglect the influence

of the beam tails (a circumstance which can be justified a posteriori comparing the
exact analytical results with numerical ones), Eq. (3.8) takes the final form

u2 2 2 2
(iaizWi)H(m (ZL2X) 4, (22T )u—o. (3.9

It is remarkable that nonlinear propagation in the presence of the diffusive non-
linearity associated with the quadratic electro-optic effect is described by such a
simple equation. Still more remarkable is the fact that, unlike any other realistic
nonlinearity (including the Kerr one), the resulting equation admits of a large vari-
ety of exact analytical solutions corresponding to nonlinear self-focused and trapped
propagation, 1817

A class of self-focused solutions, valid for 0 > ;2 > —1/4, has the Gaussian-

like form
U

n=——

(prp2)'/4
where up is a constant, d;,ds are the (dimensionless) input widths in the « and y
directions,

exp(—&%/dipy —n° [d3p2) explio(€, 1,¢)] (3.10)

16(1 + 4~1,2)

= |1
p1,2 -+ d?“z

(¢~ CI,Z)ZJ : (3.11)
(& m,C) = (P2 /p1 + P [p2) /8 — (2/d3by ")ty 1B *(C — 1))

+ (2/d3by*)tg ™ 0% (C — Ga)]. (3.12)
where b1 = 16(1 + 44, 2)/d} » and the prime stands for derivative with respect
to (.

The second class of solutions, valid for v, 2 < —1/4, represents a class of non-

Gaussian self-trapped solutions in the form of noncircular spatial solitons
which read

u = ug exp|—i(edf? + aiB3)] cosh™1 (£1£) cosh =03 (Bam) (3.13)

where af = —1/(1+4v), 02 = —1/(1 + 4v2) and 31 are arbitrary parameters
(dependent on the input beam shape).
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4. Experimental Observation of Diffusion-Driven Self-Focusing
and Ellipticity Locking in Near-Transition KLTN

It the previous section we have shown how the basic photorefractive model allows
the analytical prediction of a set of nonlinear propagation phenomena that ulti-
mately lead to 2 + 1D spatial solitons of arbitrary transverse beam-aspect ratio,
Here we relate on experiments carried in a sample of KLTN, that partially confirm
these theoretical predictions.

The experimental apparatus resembles the one illustrated in Fig. 3, however
somewhat simplified. No background illumination is implemented (actually, back-
ground illumination plays a wholly marginal role, as previously discussed), and no
external voltage V' is used. The only addition to the scheme is a prism inserted he-
fore the focusing lens, in the 2 + 1D case, that allows us to obtain, from the initial
TEMoo laser beam, a tunable, approximately stigmatic noncircular Gaussian beam
with a given ellipticity A = FWHM,/FWHM,.

The first experiment we performed consisted in launching into the sample of
KLTN a 1D Gaussian beam and observing its diffraction at the output facet. The
input beam, again a TEMgp A = 515 nm polarized (along the x direction) beam
from a CW Argon ion laser, is focused onto the input facet of the sample by means
of a cylindrical lens with f = 150 mm (and axis parallel to the y direction). The
input light distribution (a slab of light) has an input FWHM of 13 pm {11 the
confined x direction). When the crystal is kept at room temperature (T' = 20°C)

241
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Fig. 8. 1 + 1D diffusion-driven self-focusing,
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the beam diffracts to 22 pm, as expected from linear Gaussian diffraction. Low-
ering the crystal temperature towards T, we observed considerable self-focusing as
shown in Fig. 8 from 22 pm to 17 um. At even lower temperatures, as the criti-
cal regime was reached, we observed domain formation and strong beam distortion
(first domain enucleation was observed at 10.0-10.2°C). Heat transfer occurred only
through the bottom facet of the crystal which was therefore not uniformly thermal-
ized during the experiment, presenting a transverse temperature gradient (especially
at low values of T'). Our observations refer to a limited transverse (in the zy plane)
region of the crystal (about 200 x 200 pm) where the effect of the gradient was
negligible. The peak beam intensity used was of the order of Iy ~ 107 W/cm?, at
the crystal input face (spurious background illumination was at least four orders of
magnitude less intense). The experiment was repeated for higher values of Iy (up
to ten times more intense), but no appreciable difference was observed, other than
in the duration of the transient build-up regime.

Next we investigated 2 + 1D propagation. We substituted the cylindrical lens
with a spherical one and launched at the input facet of the crystal a highly confined
circular Gaussian beam. At the output we observed Gaussian linear propagation for
room temperature, but as the erystal was cooled into the near-transition regime, we
observed a peculiar heam deformation leading to a beam with elliptical transverse
intensity profile. The beam manifested self-focusing in the x direction, parallel
to the beam polarization (which did not suffer any rotation). Thus, introducing
the prism, we launched an asymmetric elliptical, approximately stigmatic, Gaus-
sian beam into the crystal and observed diffraction as a function of temperature.
Results are shown in Fig. 9. The input beam, with intensity FWHM, = 7 pm
and FWHM, = 11 pm, has an input ellipticity A = (FWHM,/FWHM_) = 1.5.
For high values of temperature, at which beam propagation is linear (from approx-
imately 15°C upwards diffusion has a negligible effect), we observed the typical
“inversion” of ellipticity at the output of the crystal, from 1.5 to 0.7, this being a
consequence of standard diffraction (stronger confinement, stronger diffraction). As
we lowered the crystal temperature we observed an evolution of the output elliptic-
ity towards a higher value. At approximately T = 10.2°C we recovered the input
ellipticity, as shown in Fig, 9, the beamn maintaining its Gaussian transverse profile.
We adjusted the input laser power in order to have a peak intensity comparable to
the 141D case and again repeated the experiment for various values of Iy observing
no appreciable difference in the final stationary configuration,

Qualitatively, both observed phenomena are directly described by the diffusion
based theory described in Sec. 3. In order to test the quantitative agreement between
theory and experiment we must evaluate the values of y; (and ) as a function of T
The beam astigmatism was negligible in the 2+ 1D configuration ({; = ¢z = 0). The
principal dependence of the (i = 1,2) on temperature is through £, that is greatly
enhanced as the temperature is lowered towards T,. In proximity of the phase-
transition the bulk dielectric crystal response is smeared-out by the temperature
gradient and other large-scale crystal inhomogeneities and values of £, will in general
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Fig. 9. Ellipticity recovery driven by diffusion.

be far lower than actual “local” erystal values. For temperatures where these effects
have a negligible effect (T > 12°C with our setup) we are able to fit bulk &, values
with the Curie-Weiss law, as described in Sec. 2. The peak value of £, actually
measured directly (in the capacitance experiment) was approximately 2 x 104 (see
Fig. 2). For values of T' closer to T, we measured directly the local (for the transverse
regions of about 200 x 200 pm?®) electro-optic index modulation by inserting the
sample in one arm of a Mach-Zehnder interferometer. In the out-of-transition range,
this allows also a measurement of gi; = 0.12 m* C~* and g3 = 0.02 m* C~? (having
independently measured &,). The measured values!” of 4, are higher than those
expected from the Curie Weiss relationship, and this can be phenomenologically
attributed to an increase in the value of g, as the quadratic dependence of An still
held for low applied voltages (V' < 250 V). Values of v; where such as to induce no
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appreciable diffusion-driven effects, remaining its value always more than five times
smaller (in absolute value) than the corresponding values of 7, for the temperatures
investigated. In Fig. 8 the solid curve represents the theoretical curve obtained
from Eqs. (3.10)-(3.11) with d» — oo. The quantitative agreement is satisfactory,
although the strong focusing for temperatures very near T, may indicate that here
some different mechanism is playing an important role. For ellipticity recovery in
the 24-1D case we recover the input ellipticity A(0) = 1.5 at T' = 10.2°C (see Fig. 9).
From Egs. (3.10)—3.11) our theory predicts that the “recoverable” ellipticity at this
temperature is Aypeor = 1.3, being 1 = —0.17 and |vy2| < 1. Thus again, as in the
1+ 1D case, the nonlinear response is stronger than expected.

Regarding the possibility of observing noncircular diffusion-driven solitons, our
samples of KLTN do not support a sufficiently strong dielectric anomaly. The
mechanism is however not peculiar to KLTN and stronger anomalies have heen
reported in different ferroelectrics, such as SBN (strontium-bariumi—niobate) and
SbSI (antimony sulphoiode).'® In these materials at least 1 + 1D solitons should be
attainable.

5. Head-On Collisions of Confined Optical Beams

As discussed in Sec. 2, background illumination in noncentrosymmetric and cen-
trosymmetric screening phenomena plays a central role. In diffusion-driven phe-
nomena, on the contrary, background illumination can generally be neglected. This
fact allows the direct investigation of slightly more complicated configurations such
as head on collisions of two mutually incoherent light beams.

Consider two confined, counterpropagating light beams that suffer a collision
inside a near-transition paraelectric. If the beams were coherent, they would give
rise to counterpropagating two-wave-mixing and exchange energy.?® Being mutually
incoherent, the nonlinear interaction is of a more subtle and interesting sort, that
can be synthetically described with the term “spatial nonlinear feedback.” Intu-
itively, we can imagine the situation as follows: one beam propagates, diffracting,
in the medium, engendering a diffusion-driven variation of the index of refraction
that leads to its self-focusing, as described in Sec. 3. The second beam equally
undergoes this process, “feeling,” at the same time, the presence of the first beam
through its index modulation, and vice versa. This mechanism leads to an aptical
feedback between the two heams. The configuration somewhat resembles optical
feedback set-ups that have led to the observation, in photorefractives, of complex
spatial structuring. In this case, however, emphasis is on spatial dynamics (not
present in the typical plane-wave configuration).?! This head-on configuration can
have a very interesting application: consider two spatial solitons counterpropagat-
ing; if the solitons, mutually incoherent, are not in axis, they will tend to attract
each other, and possibly coalesce, thus realizing a self-aligning component. The
many interesting situations we can think of encounter one major obstacle: the com-
plexity of theoretical description. The feedback system, in fact, naturally manifests
nonlocality.
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Propagation of a monochromatic paraxial beam, inside a medium possessing a
small refractive index modulation, is correctly described by the parabolic
wave-equation whose deduction from Helmholtz equation takes advantage of counter-
propagating beam's absence.’? Because here we are interested in studying counter-
propagating beam interaction, a generalization of standard paraxial-approximation
to the case of coexisting beams is fundamental. This issue is subtle, despite the
simple result that we can actually write a parabolic equation for each single beam,
the interaction being described by the refractive index dependence on the total op-
tical intensity. In fact, Helmholtz's equation, in its generality, describes both beams
and their interaction, which in nonlinear optics is two-fold: the standard coupling
due to refractive index inhomogeneity and the refractive index dependence on each
single intensity.

The complex amplitude E,(r) of the monochromatic optical field E(r,t) =
Re(E.(r)e **) is correctly described by Helmholtz equation

V2E, + kin’E, =0, (5.1)

where kg = w/c, and n is the total refractive index which we will assume to be of
the form
n=n'+ An(r), (5.2)

n' = ng + i being the unperturbed refractive index of the crystal and An(r) its
small variation due to photorefractive effect (An < ng). Generalizing the slowly-
varying amplitude approximation to the case of two counterpropagating beams, we
look for an optical field of the form

E.(r) = AM(r)e " 4 A (r)e~i#% (5.3)
On substituting Eq. (5.3) in Eq. (5.1) and with the approximation n? = n’?+-2n'An,

we obtain the equation

9 s '.
{[Vi + % + 2&6-{% + Qikgﬂ,na - 2.“.‘5(]10 o 'ia)AnJA(+)} iz

2 .
+ {[Vﬁ_ + é% — 2iﬁ% + 2ikgnoa + 2ka(no + ia)An] A(')} e =0, (54)

where 8 = kgy/n% — a2 and V2 = 0%/0x2* + 98?/9y*. The paraxial approximation
now consists in neglecting the 82/82% terms.3? The resulting equation is satisfied
on setting

1 k

—vi +-i£ +iv| A = —ZApAH) |

2k 0z i (5:5)
iv% g +iy| AD) = LW |
2k~ Oz ng !

where k = kgno, ¥ = k§noa/3 and we have used the fact that 3= k (we have also
neglected a with respect ng in the r.h.s. of (5.5)).
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In what follows we formulate the problem in more general context, introdu-
cing, along with the diffusive nonlinearity, also drift contributions in the form of a
screening term, underlining the fact that, as previously mentioned, the experimen-
tal realization of a counterpropagating configuration with a constant value of back-
ground illumination I introduces a relevant experimental complication (whereas in
the mere diffusive nonlinearity this problem does not arise). In centrosymmetric
photorefractive media, the expression of the An as a function of optical intensity is
(see Eqs. (2.2), (3.2) and (3.3))%"

. o[ KgT d T+ w 17
o 3 2 _qya | #BL & b
An = —(1/2)nggeg(er — 1) [ g dr og ( T ) ai - Ib:l y (5.6)

where I = |A(+)eif 4 A(-)e~18%|2 {5 the optical intensity, and w is a constant that
depends on the bias voltage. Expression (5.6) works under a number of approxi-
mations one of which, namely |01/8z| < |0I/0x|, forces us to consider mutually
incoherent beams whose total optical intensity is I = [A)}2 4+ | A(7)|2; besides, ex-
pression (5.6) is valid only in the 141D case. The “free” parameters w, Iy, £,, testify
to the high degree of tunability of the centrosymmetric near-transition interaction.
Other degrees of freedom come from the choice of the boundary conditions
A(+)(:c,0) = f("‘)(a:).
Az, L) = f)(z),
where L is the crystal length in the propagation direction z.

Equations (5.5) are the fundamental, coupled, paraholic, equations describing
counterpropagating beam interaction. We stress that beam-coupling comes only
from refractive index dependence on both beam intensities: beam-interaction from
index-inhomogeneity may be neglected whenever An is a slowly varying function of
z, and this is the limit in which our scheme works. As mentioned, an interesting fea-
ture of each beam propagation contained in Egs. (5.5) is nonlocal optical-feedback.
Let us consider AH): it starts its propagation in a refractive index locally depend-
ing on A™) which in turn propagates from z = L self-consistently affected by A‘*)
in other points of the crystal. So A*) is indirectly affected in its propagation by its
shape in more than one point of the medium and this is precisely an optical-feedback
effect. In a particular symmetric condition, such a feedback effect is more evident,
Suppose, for example that f*)(z) = f\=)(x) , true if beams entering opposite sides
of the crystal are identical; one can show in a straightforward manner, starting from
Eq. (5.5), that A" )(z,z) = A (2, L — z) inside the whole crystal. Inserting this
relation in the first equation of (5.5) we obtain

a1 9 H,,T] AH):_knggE%(sr—l)?

(5.7)

"5z t %o )
KgT d I+1 w 1?
- = Al
xl: q drlog( Iy )+I+Id:| !
I(x,z) = |AD) (2, 2)]? + |AT) (2, L — 2)|2, (5.8)
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which is a single equation for A} completely equivalent to Eq. (5.5). Feedback
and strong nonlocality is manifested in the direct dependence of A™) at (z,z) on
A at (x, L — z). This formally closes the head-on collision problem.
Mathematical difficulties in handling Eq. (5.5) (or Eq. (5.8) in symmetric condi-
tion) lead us to adopt a numerical scheme. Moreover, having in mind the realization
of versatile optical devices, we are forced to use a method capable of predicting, at
least in principle, optical field behavior inside the crystal for a general set of exter-
nal parameters and boundary conditions. The numerical method we use in solving
Eq. (5.5) with conditions (5.7) is based on an iterative scheme. At the first step
we introduce in expression (5.6) a two test functions A((,H and A((f) satisfying (5.7)
(they may be, for example, free fields) and we solve Eq. (5.5) (which now are two
linear partial differential equations) with the method of finite differences, obtaining
two functions Agﬂ and A(t—) (imposing (5.7) on them). At the second step we
introduce Ag“ and AE_’ in (5.6) and in Eq. (5.5), obtaining an expression for A(zﬂ
and A(g_". It can be shown that upon iterating, the sequence of ALY and A4
converges to the solutions A7) and A of (5.5). The sequence is truncated when

conditions Aif_’, >~ ALY and As;jl =~ A5 are fulfilled (within the chosen accuracy).
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