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A one- and two-dimensional nonlinear pulse interaction
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The peculiar intergrability of the Davey-Stewartson equation allows us to analytically find solutions describ-
ing the simultaneous formation and interaction of one-dimensional and two-dimensional localized coherent
structures. The predicted phenomenology allows us to address the issue of interaction of solitons of different
dimensionality that may serve as a starting point for the understanding of hybrido-dimensional collisions
recently observed in nonlinear optical media.

PACS number~s!: 05.45.Yv, 52.35.Mw, 42.81.Dp
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Nonlinear wave propagation occurs in many differe
physical systems~e.g., water waves and optics! and leads to
a myriad of different interesting and useful phenomena t
are in striking contrast to linear propagation effects@1#.
Among these, the emergence of localized nondispersive
herent pulses, solitons, that do not suffer deformation
that undergo elasticlike collisions, have attracted much at
tion @2#. Perhaps their most peculiar physical feature is as
ciated with their interaction dynamics. Whereas class
soliton experimental studies have been confined to lower
mensional~one-dimensional, 111D! systems, where diffrac
tion occurs in one dimension only, in the last decade exp
ments in nonlinear optics have allowed the sta
observation of both 111D solitons in a bulk environment
known as stripe or wall solitons, and two-dimensional~2
11D! needle solitons, where linear deformation is halted
two pulse dimensions@3#. Surprisingly, such phenomena ca
be observed in the same nonlinear mediumsimultaneously,
and have permitted the observation of a new solitonic p
cess: the collision and interaction of two solitons of differe
dimensionality, one being a needle, the other a stripe,
photorefractive crystal@4#. Furthermore, recent experimen
in near-resonant gases have allowed the study of interac
between a vortex and a dark stripe soliton@5#. To our knowl-
edge a stripe-needle collision has never been theoretic
investigated, nor in optical physics, or in any other cont
for that matter. The description, apart from encountering
‘‘standard’’ difficulties connected to nonlinear partial diffe
ential equations~only rarely integrable!, poses a number o
modeling riddles. To name one, the model should supp
both stripe and needle solutions, and most importan
needle-stripe hybrid solutions, a circumstance that even i
linear realization poses peculiar issues@6#. Even more, al-
though a numerical investigation of a Kerr-saturated mo
has been performed@4#, in order to obtain a clear and com
plete picture, we would like an actual integrable nonline
model. In this Rapid Communication we tackle the hyb
collision in the frame of the Davey-Stewartson equat
~DS! @7#, a generalization of the nonlinear Schro¨dinger equa-
tion ~NLS! @8#, that is known to allow for the explicit ana
lytical description of stripe solitonsand needle solitons,
PRE 611063-651X/2000/61~5!/4714~4!/$15.00
t

t

o-
d
n-
o-
l
i-

i-
e

n

-
t
a

on

lly
t
e

rt
,

its

l

r

separately@9#. After showing that the system can actual
support a hybrido-dimensional structure, we are able to
rive fully analytical solutions for the needle-stripe intera
tion, making use of the ‘‘dressing’’ theorem@10#. For zero-
angle collisions we find periodic ‘‘breathing,’’ hinting at th
possible existence of stationary hybrid states. For angled
teraction, we find that the two components, needle and str
retain their original identity and localization after the col
sion, even though the needle changes shape.

The DS equation is a generalization of the NLS equat

iQz1Qxx1cuQu2Q50, ~1!

where the binding self-interaction potential2cuQu2 (c being
a positive parameter! is local and responsible for the exis
tence of localized, stable, nondispersive pulsesQ(x,z). DS
solitons are solutions of the DS equation

iEz1Exx1Eyy1VE50, ~2a!

V~x,y,z!5v~x,z!1u~y,z!1~1/2!F E
2`

x

~ uE~s,y,z!u2!yds

1E
2`

y

~ uE~x,s,z!u2!xdsG , ~2b!

where the binding potentialV(x,y,z) is now anonlocalex-
pression of the intensityuEu2, and v and u are two given
arbitrary binding one-dimensional~i.e., v on thex axis andu
on they axis! potentials~‘‘waveguides’’! which are respon-
sible for the formation of localized pulsesE(x,y,z). These
would exist even if the self-interaction terms werenot
present@say, in the linearized limit of Eq.~2!#. Thus, in the
two-dimensional case, solitons are formed by ‘‘extern
waveguides,’’ whereas the interaction is mediated by
nonlinear terms. To emphasize this difference with respec
NLS solitons, DS solitons are sometimes referred to as ‘‘d
mions’’ @11#. As opposed to the full two-dimensional loca
ization, in the important case of vanishing external pote
tials, v50 andu50, solitons can be localized in one sing
direction, say in the transverse coordinateT5x cosq
R4714 ©2000 The American Physical Society
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FIG. 1. Level plot ofuEu for the dromion so-
lution, with p51, q52, andA54, for ~a! v5
22p2/cosh2(px), u522q2/cosh2(qy), and~b!
v522pd(x), u522qd(y).
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1y sinq. These solutions of Eq.~2!, E5E(T,z), are actu-
ally also solutions of Eq.~1! with c51/sin(2q) for 0,q
,p/2, and represent straight walls in the (x,y) plane. This
equivalence can be used to identify the physical lengths
volved in obtaining dimensionless variables throughout
paper, namely, the diffraction length and the nonlinear len
@8#. Note that NLS soliton collisions@12# and dromion col-
lisions have been extensively investigated by means of m
tisoliton solutions, their differences being well-known@9#.

In terms of the DS equation@Eq. ~2!#, the hybrid collision
under study is that of a wall soliton and a needle dromi
Taking advantage of the fact that the~one-dimensional! NLS
solitons appear themselves as wall solutions in the (x,y)
plane of the DS equation~as pointed out above!, we consider
exact solutions of Eq.~2! which are the nonlinear superpos
tion of a wall ~NLS 1D soliton in the transverse coordina
T) and a ball~dromion!.

A variety of solutions of the DS equation have been
ready constructed, including the one-wall solution, us
various techniques, such as Backlund transformations@13#,
bilinearization@14#, and the inverse spectral method@9#. Our
approach here is based on a dressing formula@9,10#, which
follows from the spectral transform method of constructi
solutions which vanish at infinity in all directions~say as
x21y2→`) but whose validity can be easily recognized
include also wall-type solutions. This formula~for details
and generalizations, see Ref.@10#! reads

E5A11f
~1!g~1!1A12f

~1!g~2!1A21f
~2!g~1!1A22f

~2!g~2!,
~3!

where f ( j )(x,z) and g( j )(y,z), j 51,2, are solutions of the
~linear! Schrödinger equationsi f z

( j )1 f xx
( j )1u f ( j )50 and, re-

spectively, igz
( j )1gyy

( j )1vg( j )50, and the functions
Ajn(x,y,z) are the entries of the 232 matrix

A52R~11GR1F* R!21, ~4!

R being a diagonal constant matrix,Rjn5ajd jn , where its
entries a1 and a2 are two complex parameters, while th
Hermitian matricesF(x,z) and G(y,z) are defined by the
integral expressions

F jn5E
2`

x

f ~ j !~s,z! f ~n!* ~s,z!ds,

Gjn5E
2`

y

g~ j !~s,z!g~n!* ~s,z!ds. ~5!
-
e
h

l-

.

-
g

The linear approximation of Eq.~3!, which is obtained by
replacing the matrixA with 2R, is just the linear superposi
tion of the two solutionsf ( j )(x,z)g( j )(y,z), j 51,2, of the
linearized DS equation~that is the Schro¨dinger equation with
a separable potential!. Furthermore, the expression which
obtained by setting in Eq.~3! a250 (a150) is a solution of
Eq. ~2! and, throughout the paper, we associate withj 51 the
wall solution and withj 52 the dromion~ball! solution. With
this terminology, therefore, Eq.~3!, with definitions of Eqs.
~4! and~5!, describes the interaction of a wall and a ball, a
our task is to display the main properties of this collision
analyzing both graphically and analytically this formula.

To highlight the relevant aspects of the hybrid nonline
interaction we assume thatv5v(x) andu5u(y) be z inde-
pendent. Thus functionsf ( j )(x,z) andg( j )(y,z) are assumed
to be stationary solutions of the Schro¨dinger equation,
namely,

f ~ j !~x,z!5exp~lx1 il2z! f̃ ~ j !~x,l!,

g~ j !~y,z!5exp~my1 im2z!g̃~ j !~y,m!, ~6!

wherel andm are complex parameters~see below! and func-
tions f̃ ( j ) andg̃( j ) depend on the particular potentialsv andu,
respectively. For instance, the pure wall solution is obtain
by settinga152kA2 sinq exp(ig02kT0), a250, v5u50,
f̃ (1)5g̃(1)51, l5a1 ia, m5b1 ib and can be expressed a
E5exp@ i (b cosq2a sin q)L#ENLS(T,z), where L
5y cosq2x sin q is the ~longitudinal! coordinate along
the wall direction,a5k cosq, b5k sin q ~q being the
angle between the wall and they axis! and ENLS

5kA2 sin q exp$ i @ST/22z(a21b22k2)1g0#%/cosh@k(T
2T02Sz)# is the standard expression of the NLS soliton
the transverse coordinateT, while S52(a cosq
1b sin q) is the tangent of the angle between thez axis and
the propagation direction, andg0 and T0 are arbitrary real
parameters. As is well-known, a characteristic feature of
one-dimensional solitons is that their width and amplitu
are related to each other, in contrast to the case of drom
~see below!.

As mentioned above, ball-like solutions necessit
of nonvanishing potentialsv and u. With the purpose
of analytically solving the corresponding Schro¨dinger
equation, we make two different choices of potentia
and show that the main features of the processes we des
are not strongly dependent on the potential. The b
known dromion solution is obtained witha150, a25A
~arbitrary complex constant!, v522p2/cosh2(px), u5
22q2/cosh2(qy) (p and q being positive real parameters!
and reads E5A exp@ i (p21q2)z#/$4 coshpx coshqy@1
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FIG. 2. ~a! Level plot of uEu for the wall solution for the valuesp51, q52, a154, l51.0112i , andm52.110.5i ; ~b!–~e! corre-
sponding sections forL54, 2, 22, and24, respectively, as a function ofT.
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1uAu2(11tanhpx)(11tanhqy)/(64pq)#%. A second
simple example of a dromion solution is obtain
for binding potentials that are Dirac distribution
namely, v522pd(x), u522qd(y); in this case the
solution is E5A exp@ i (p21q2)z#exp(2puxu2quyu)/
@11uAu2/4pq)M (x,p)M (y,q)], with M (x,p)51
2 1

2 exp(22px) if x.0, M (x,p)5 1
2 exp(2px) if x,0. The

level plot of uEu in the (x,y) plane for both these dromions
shown in Fig. 1.

As a direct consequence of the nonvanishing external
tentialsv and u, the wall gets warped and its expression
modified in the neighborhood of the originx5y50 with
respect to the expression we have given above forv5u
50. This effect can be illustrated by explicitly computing th
wall solution for both choices of potentialsv and u intro-
duced above. The corresponding level plot is shown in Fig
along with some cross-section profiles. These show that,
large distance from the origin, the wall is an NLS soliton
the transverse coordinateT. In fact, as the longitudinal coor
dinateL goes to6`, these asymptotic solitons turn out to b
merely shifted, with respect to each other, both in phase
position. Thus their expression is again the one given ab
o-

2
t a

d
ve

but with the free parametersg0 andT0 replaced byg6 and,
respectively, byT6 ~for L going to 6`!. The shiftsDT
5T12T2 andDg5g12g2 turn out to have a simple ex
plicit expression which is easily read out of the followin
relations: exp(2kDT1 iDg)5@(l1p)(m2q)/(l2p)(m
1q)# for the first choice of the potentials~i.e., v
522p2/cosh2(px), u522q2/cosh2(qy)) and exp
(2kDT1 iDg)5@12(q/m)#/@12(p/l)# for potentials v
522pd(x), u522qd(y). For a completely symmetric
setup in the coordinatesx and y, say p5q and l5m, the
shifts of phase and position vanish. We are now in a posit
to discuss the solution of the DS Eq.~2!, which describes
interaction between ball and wall that we have separa
discussed above. This hybrid solution is obtained by ins
ing functionsf ( j ) andg( j ) @see Eq.~6!# in the general formula
of Eq. ~3! and by performing the integrals of Eq.~5!, con-
structing matrixA of Eq. ~4!. Integrals of Eq.~5! can be
analytically computed only for the Dirac distribution pote
tials ~i.e., for our second choice of potentials above!, whereas
the asymptotic expressions for very largezcan be derived for
both choices of external potentials. While we omit detail
computations, we report the main properties of these s
FIG. 3. Level plot ofuEu for the dromion-wall solution~with Dirac d function potentials! for the valuesp51, q52, l52, m53, a1

54, anda250.04 for whichS50. The six pictures are obtained respectively for (2pn/5h) with n50,1,2,3,4,5. The period is 2p/uhu
5p/4.
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FIG. 4. Level plot ofuEu for the dromion-wall solution~with Dirac d function potentials! for parameter valuesp51, q52, l51.01
22i , m52.110.5i , a154, anda256, ~a! at z528 and~b! at z58.
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tions. We first note that, since the binding potentialsv andu
do not ‘‘move’’ with z, also the dromion remains confine
around the originx5y50 for all values ofz, for a needle
that enters perpendicularly to the (x,y) plane and propagate
along thez direction. On the contrary, the wall moves in th
(x,y) plane perpendicularly to its longitudinal direction wi
rate S52(a cosq1b sin q)52(aa1bb)/k, which we
assume to be nonpositive,S<0. In particular,S50 is of
special interest, this being the case in which the stripe
the needle are parallel to each other. In such a situation
intensity uEu2 is a periodic function, depending onz only
through the expressions sin(hz) and cos(hz), where h
5a21b22a22b21p21q2. This solution of the DS equa
tion behaves, therefore, like abreatherand its contour plot in
the (x,y) plane is shown in Fig. 3. The oscillation frequen
h depends on the potentialsv andu only through their bound
state energyp2 and q2, respectively, and therefore the e
pression ofh is the same for both the choices of potentia

Finally, consider the collision between the needle and
stripe, withS,0, shown in Fig. 4. For very large and neg
tive values ofz, the wall is far away from the origin and it
shape is not affected by the dromion@see Fig. 4~a!#; indeed it
looks like the pure wall solution, with a NLS soliton cros
section profile. It then hits the dromion, goes through it, a
separates again asz becomes large and positive, while i
cross section asymptotically recovers its pure NLS soli
profile. The only effect of the collision on the wall is a sh
of the phase,Dgc , and of the positionDTc , which is ex-
pressed by the relation exp(2kDTc1 iDgc)5@(l2p)(m
hy

ni

.

. A
d
he

e

d

n

2q)/(l1p)(m1q)# for the potentials v
522p2/cosh2(px), u522q2/cosh2(qy), and exp
(2kDTc1 iDgc)5@12(p/l)#@12(q/m)# for the other
choice of the potentials,v522pd(x), u522qd(y). As for
the ball, its shape changes considerably as a consequen
the collision, as is quite apparent in Fig. 4. Moreover, t
total energy,H5*2`

1`dx*2`
1`dyuEu2, although conserved, is

infinite because of the wall component, and a conclus
about the conservation of the dromion energy cannot be
rectly derived from the break-up process we have describ
We conjecture that its energy does not change, given th
shift of the phase and position of the cross section profile
the wall does not change its energy density. In addition,
conclusion agrees with the similar dromion energy conser
tion found in the dromion-dromion collision@9#, if the con-
stant matrixR @see the definition of Eq.~4!# is diagonal, as it
is in the present case.

In conclusion, we have studied analytically the hybr
collision of a one-dimensional stripe soliton and a tw
dimensional needle in the framework of the Dave
Stewartson equation.
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